The effect of electric field on an asymmetric quantum dot qubit

The effect of electric field on an asymmetric quantum dot qubit On the condition of strong electron–LO phonon coupling in an asymmetric quantum dot (QD), we study the eigenenergies and eigenfunctions of the ground and the first excited states under an applied electric field by using variational method of Pekar type. This QD system may be used as a two-level qubit. When the electron is in the superposition state of the ground and the first excited states, we obtain the time evolution of the electron probability density, which oscillates in the QD. It is found that due to the presence of the 3-D anisotropic harmonic potentials in the transverse and longitudinal directions of the QD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is 2-D symmetric in the x- and y-directions. The oscillation period is an increasing function of the transverse and longitudinal effective confinement lengths of the QD, and decreases with respect to the electron–phonon coupling strength and the electric field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

The effect of electric field on an asymmetric quantum dot qubit

Loading next page...
 
/lp/springer_journal/the-effect-of-electric-field-on-an-asymmetric-quantum-dot-qubit-Vq62eei3Ie
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0631-8
Publisher site
See Article on Publisher Site

References

  • Spin-polarized transport through an Aharonov–Bohm interferometer with Rashba spin-orbit interaction
    Chi, F; Li, SS
  • InAs/GaAs single-electron quantum dot qubit
    Lis, SS; Xia, JB; Liu, JL; Yang, FH; Niu, ZC; Feng, SL; Zheng, HZ
  • Quantum computation with quantum dots
    Loss, D; DiVincenzo, DP

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial