The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of Mn Х Fe3−X О4 Spinels

The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of Mn Х... Nano-sized manganese ferrites Mn х Fe3 − х О4 (х = 0–1.3) were prepared using contact non-equilibrium plasma (CNP) in two different pH (11.5 and 12.5). The influence of synthesis conditions (e.g., cation ratio and initial pH) on phase composition, crystallite size, and magnetic properties were investigated employing X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurement techniques. The formation of monodispersed faceted ferrite particles at х = 0–0.8 was shown. The FTIR spectra revealed reflection in region 1200–1700 cm−1 caused by the presence of water adsorbed on the surface of Fe3 − x Mn x O4 micro-granules or embedded into their crystal lattice. The most sensitivity of reflection spectra to the composition changes takes place within a 400–1200 cm−1 range, typical to the stretching vibrations of Fe(Mn)–O (up to 700 cm−1 ), Fe(Mn)–OH, and Fe(Mn)–OH2 bonds (over 700 cm−1). The XRD results showed that the nanocrystalline Mn х Fe3 − х О4 (0 < x < 1.0) had cubic spinel crystal structure with average crystallite size 48–49 A. The decrease of crystalline size with the x increase was also observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Research Letters Springer Journals

The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of Mn Х Fe3−X О4 Spinels

Loading next page...
 
/lp/springer_journal/the-effect-of-contact-non-equilibrium-plasma-on-structural-and-5WaKf44Hgq
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s).
Subject
Materials Science; Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine
ISSN
1931-7573
eISSN
1556-276X
D.O.I.
10.1186/s11671-017-2268-5
Publisher site
See Article on Publisher Site

Abstract

Nano-sized manganese ferrites Mn х Fe3 − х О4 (х = 0–1.3) were prepared using contact non-equilibrium plasma (CNP) in two different pH (11.5 and 12.5). The influence of synthesis conditions (e.g., cation ratio and initial pH) on phase composition, crystallite size, and magnetic properties were investigated employing X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurement techniques. The formation of monodispersed faceted ferrite particles at х = 0–0.8 was shown. The FTIR spectra revealed reflection in region 1200–1700 cm−1 caused by the presence of water adsorbed on the surface of Fe3 − x Mn x O4 micro-granules or embedded into their crystal lattice. The most sensitivity of reflection spectra to the composition changes takes place within a 400–1200 cm−1 range, typical to the stretching vibrations of Fe(Mn)–O (up to 700 cm−1 ), Fe(Mn)–OH, and Fe(Mn)–OH2 bonds (over 700 cm−1). The XRD results showed that the nanocrystalline Mn х Fe3 − х О4 (0 < x < 1.0) had cubic spinel crystal structure with average crystallite size 48–49 A. The decrease of crystalline size with the x increase was also observed.

Journal

Nanoscale Research LettersSpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off