Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves

The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of... CO2 exchange, variable chlorophyll fluorescence, the intensity of lipid peroxidation (POL), and the activity of antioxidant enzymes in leaves of two-week-old pea seedlings (Pisum sativum L.) exposed to 0.01, 0.1, and 1 mM aqueous solutions of Cd(NO3)2 for 2 h were studied. Incubation with Cd2+ ions resulted in a reduction of the maximum quantum efficiency of photosynthesis, CO2 uptake rate, and photosystem II (PSII) activity, as assessed by F v/F 0 ratio. The intensity of POL in leaves of all treated seedlings was below or close to the control level. The activity of superoxide dismutase (SOD) and glutathione reductase (GR) increased in all treatments; the activity of ascorbate peroxidase (AP) exceeded the control level only in seedlings exposed to the high Cd2+ concentration (1 mM), and the activity of peroxidase increased at the low concentration (0.01 mM). We found that the reduction in the activity of the photosynthetic apparatus under conditions of 2-h-long Cd2+-induced stress was not related to an intensification of POL processes. It was concluded that stimulation of the activity of antioxidant enzymes—SOD, GR, AP, and peroxidase—is a pathway for pea plant adaptation to toxic effect of cadmium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves

Loading next page...
1
 
/lp/springer_journal/the-effect-of-cadmium-on-co2-exchange-variable-fluorescence-of-cAUtTWHRWD

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
DOI
10.1007/s11183-005-0003-z
Publisher site
See Article on Publisher Site

Abstract

CO2 exchange, variable chlorophyll fluorescence, the intensity of lipid peroxidation (POL), and the activity of antioxidant enzymes in leaves of two-week-old pea seedlings (Pisum sativum L.) exposed to 0.01, 0.1, and 1 mM aqueous solutions of Cd(NO3)2 for 2 h were studied. Incubation with Cd2+ ions resulted in a reduction of the maximum quantum efficiency of photosynthesis, CO2 uptake rate, and photosystem II (PSII) activity, as assessed by F v/F 0 ratio. The intensity of POL in leaves of all treated seedlings was below or close to the control level. The activity of superoxide dismutase (SOD) and glutathione reductase (GR) increased in all treatments; the activity of ascorbate peroxidase (AP) exceeded the control level only in seedlings exposed to the high Cd2+ concentration (1 mM), and the activity of peroxidase increased at the low concentration (0.01 mM). We found that the reduction in the activity of the photosynthetic apparatus under conditions of 2-h-long Cd2+-induced stress was not related to an intensification of POL processes. It was concluded that stimulation of the activity of antioxidant enzymes—SOD, GR, AP, and peroxidase—is a pathway for pea plant adaptation to toxic effect of cadmium.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 19, 2005

There are no references for this article.