The effect of boundary conditions by the side of the nozzle of a low Reynolds number jet

The effect of boundary conditions by the side of the nozzle of a low Reynolds number jet The near flow field of an axially symmetric water jet at Reynolds numbers from about 1,000 to 10,000 is investigated using laser-induced fluorescence (LIF), laser Doppler anemometry and particle tracking velocimetry. Spanwise and streamwise vortices are detected on the longitudinal plane and on cross-sections. Attention is focused onto the effects of rigid or free boundaries sideways to the nozzle outlet (no-slip or free-slip conditions), and particularly on the start up, growth and interaction of large vortical structures. On average, for the free-slip jet these structures develop more gradually and closer to the nozzle than for the no-slip jet; the local mixedness (derived from LIF measurements) is also higher for the free-slip case. Moreover, the measured velocity field decreases more slowly, with a longer potential core and a higher shear layer (momentum) thickness for the free-slip rather than for the no-slip conditions. The relation between spanwise and streamwise large-scale vortices is clarified by the observation that the ejection of fluid in cross-sections through streamwise vortices is coupled to the pairing of spanwise vortices on the longitudinal section. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The effect of boundary conditions by the side of the nozzle of a low Reynolds number jet

Loading next page...
 
/lp/springer_journal/the-effect-of-boundary-conditions-by-the-side-of-the-nozzle-of-a-low-HefIh0s645
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0439-2
Publisher site
See Article on Publisher Site

Abstract

The near flow field of an axially symmetric water jet at Reynolds numbers from about 1,000 to 10,000 is investigated using laser-induced fluorescence (LIF), laser Doppler anemometry and particle tracking velocimetry. Spanwise and streamwise vortices are detected on the longitudinal plane and on cross-sections. Attention is focused onto the effects of rigid or free boundaries sideways to the nozzle outlet (no-slip or free-slip conditions), and particularly on the start up, growth and interaction of large vortical structures. On average, for the free-slip jet these structures develop more gradually and closer to the nozzle than for the no-slip jet; the local mixedness (derived from LIF measurements) is also higher for the free-slip case. Moreover, the measured velocity field decreases more slowly, with a longer potential core and a higher shear layer (momentum) thickness for the free-slip rather than for the no-slip conditions. The relation between spanwise and streamwise large-scale vortices is clarified by the observation that the ejection of fluid in cross-sections through streamwise vortices is coupled to the pairing of spanwise vortices on the longitudinal section.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 14, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off