The Effect of Aerobic Methylotrophic Bacteria on the in vitro Morphogenesis of Soft Wheat (Triticum aestivum)

The Effect of Aerobic Methylotrophic Bacteria on the in vitro Morphogenesis of Soft Wheat... The effects of four aerobic methylotrophic bacteria on the morphogenesis of soft wheat (Triticum aestivum) were studied in vitro using immature embryos as explants. The inoculation of the embryos with methylotrophic bacteria led to their stable colonization with the bacteria. The colonization of the explants with the strains of Methylobacterium sp. D10 and Methylophilus glucoseoxidans stimulated the formation of morphogenic calli and shoots and also promoted development of the regenerated plants. These regenerated plants manifested bright green leaves and a well-developed root system. The colonization of immature wheat embryos with methylotrophic bacteria can be employed as a tool for raising the efficiency of genetic transformation of various wheat cultivars. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Effect of Aerobic Methylotrophic Bacteria on the in vitro Morphogenesis of Soft Wheat (Triticum aestivum)

Loading next page...
 
/lp/springer_journal/the-effect-of-aerobic-methylotrophic-bacteria-on-the-in-vitro-y0cND2000k
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1023861918193
Publisher site
See Article on Publisher Site

Abstract

The effects of four aerobic methylotrophic bacteria on the morphogenesis of soft wheat (Triticum aestivum) were studied in vitro using immature embryos as explants. The inoculation of the embryos with methylotrophic bacteria led to their stable colonization with the bacteria. The colonization of the explants with the strains of Methylobacterium sp. D10 and Methylophilus glucoseoxidans stimulated the formation of morphogenic calli and shoots and also promoted development of the regenerated plants. These regenerated plants manifested bright green leaves and a well-developed root system. The colonization of immature wheat embryos with methylotrophic bacteria can be employed as a tool for raising the efficiency of genetic transformation of various wheat cultivars.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off