The E2FD/DEL2 factor is a component of a regulatory network controlling cell proliferation and development in Arabidopsis

The E2FD/DEL2 factor is a component of a regulatory network controlling cell proliferation and... An emerging view of plant cell cycle regulators, including the E2F transcription factors, implicates them in the integration of cell proliferation and development. Arabidopsis encodes six E2F proteins that can act as activators or repressors of E2F-responsive genes. E2FA, E2FB and E2FC interact with the retinoblastoma-like RBR protein and bind to DNA together with their DP partners. In contrast, E2FD, E2FE and E2FF (also known as DEL2, DEL1 and DEL3) are atypical E2Fs that possess duplicated DNA binding regions, lack trans-activating and RBR-binding domains and are believed to act as transcriptional inhibitors/repressors. E2FE/DEL1 has been shown to inhibit the endocycle and E2FF/DEL3 appears to control cell expansion but the role of E2FD/DEL2 has not been reported so far. In this study, we investigated the expression of E2FD/DEL2 and analysed the accumulation of its product. These studies revealed that E2FD/DEL2 accumulation is subject to negative post-translational regulation mediated by the plant hormone auxin. Moreover, the analysis of mutant and transgenic plants characterized by altered expression of E2FD/DEL2 has revealed that this atypical E2F can affect plant growth by promoting cell proliferation and repressing cell elongation. Overexpression of E2FD/DEL2 increased the expression of E2FA, E2FB and E2FE/DEL1 whereas its inactivation led to the up-regulation of genes encoding repressors of cell division. These results suggest that E2FD/DEL2 is part of a regulatory network that controls the balance between cell proliferation and development in Arabidopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The E2FD/DEL2 factor is a component of a regulatory network controlling cell proliferation and development in Arabidopsis

Loading next page...
 
/lp/springer_journal/the-e2fd-del2-factor-is-a-component-of-a-regulatory-network-rVNoeNdkz5
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9577-8
Publisher site
See Article on Publisher Site

Abstract

An emerging view of plant cell cycle regulators, including the E2F transcription factors, implicates them in the integration of cell proliferation and development. Arabidopsis encodes six E2F proteins that can act as activators or repressors of E2F-responsive genes. E2FA, E2FB and E2FC interact with the retinoblastoma-like RBR protein and bind to DNA together with their DP partners. In contrast, E2FD, E2FE and E2FF (also known as DEL2, DEL1 and DEL3) are atypical E2Fs that possess duplicated DNA binding regions, lack trans-activating and RBR-binding domains and are believed to act as transcriptional inhibitors/repressors. E2FE/DEL1 has been shown to inhibit the endocycle and E2FF/DEL3 appears to control cell expansion but the role of E2FD/DEL2 has not been reported so far. In this study, we investigated the expression of E2FD/DEL2 and analysed the accumulation of its product. These studies revealed that E2FD/DEL2 accumulation is subject to negative post-translational regulation mediated by the plant hormone auxin. Moreover, the analysis of mutant and transgenic plants characterized by altered expression of E2FD/DEL2 has revealed that this atypical E2F can affect plant growth by promoting cell proliferation and repressing cell elongation. Overexpression of E2FD/DEL2 increased the expression of E2FA, E2FB and E2FE/DEL1 whereas its inactivation led to the up-regulation of genes encoding repressors of cell division. These results suggest that E2FD/DEL2 is part of a regulatory network that controls the balance between cell proliferation and development in Arabidopsis.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 25, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off