The diversity of retroelements in diploid and allotetraploid Brassica species

The diversity of retroelements in diploid and allotetraploid Brassica species Using universal PCR primers, some 80 fragments of retroelement reverse transcriptase genes were isolated from 16 accessions of the three diploid and three derived allotetraploid species of Brassica in the triangle of U. Sequence analysis showed that the Ty1/copia and LINE-like elements were distinct, while a third clade could be sub-divided into Ty3/gypsy, Athila and virus-like branches, providing evidence that there are multiple sub-lineages within this group normally considered to be gypsy-like elements in plants. The parsimony trees showed no branches correlating with the known genome relationships for the six diploid and allotetraploid Brassica species, probably because members of the element families were present in the common ancestor of the Brassica and, unlike other repetitive sequences, there is no evidence for genome-wide homogenization, although convergent evolution or horizontal transfer cannot be ruled out. Southern hybridization suggested some sub-families were amplified in individual species. The data show that retroelement sequence data do not allow inference of phylogeny, but knowledge of evolution of such abundant sequences assists in exploitation and interpretation of data from other species including models with much smaller genomes and may provide markers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The diversity of retroelements in diploid and allotetraploid Brassica species

Loading next page...
 
/lp/springer_journal/the-diversity-of-retroelements-in-diploid-and-allotetraploid-brassica-qMQU47DFgf
Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-0391-z
Publisher site
See Article on Publisher Site

Abstract

Using universal PCR primers, some 80 fragments of retroelement reverse transcriptase genes were isolated from 16 accessions of the three diploid and three derived allotetraploid species of Brassica in the triangle of U. Sequence analysis showed that the Ty1/copia and LINE-like elements were distinct, while a third clade could be sub-divided into Ty3/gypsy, Athila and virus-like branches, providing evidence that there are multiple sub-lineages within this group normally considered to be gypsy-like elements in plants. The parsimony trees showed no branches correlating with the known genome relationships for the six diploid and allotetraploid Brassica species, probably because members of the element families were present in the common ancestor of the Brassica and, unlike other repetitive sequences, there is no evidence for genome-wide homogenization, although convergent evolution or horizontal transfer cannot be ruled out. Southern hybridization suggested some sub-families were amplified in individual species. The data show that retroelement sequence data do not allow inference of phylogeny, but knowledge of evolution of such abundant sequences assists in exploitation and interpretation of data from other species including models with much smaller genomes and may provide markers.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off