The distribution of mitoses in the imaginal disks of third-instar Drosophila melanogaster larvae

The distribution of mitoses in the imaginal disks of third-instar Drosophila melanogaster larvae Development of Drosophila imaginal discs is accompanied by a high-ordered cell proliferation. However, the distinctions in the topographic distribution of mitoses at different developmental stages are insufficiently studied. In this work, we have analyzed the distribution of mitoses in the wing disc of third-instar larvae and determined the regions where mitotic clustering. The results obtained demonstrate that the proliferation rate is region-specific, which is determined by the location of cell cycle regulators and/or the location of growth factors. A comparison of the topography of mitoses with the activity patterns of the regulatory regions of gene string (stg), a known regulator of the mitotic M phase, has demonstrated a similarity between the topography and the activity pattern of one of these regions. The similarity between mitotic distributions in the left and right discs of the same larva (compared with the similarity of gene neuralized expression patterns is considered, and the degree of histone H3 phosphorylation at various mitotic stages is analyzed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The distribution of mitoses in the imaginal disks of third-instar Drosophila melanogaster larvae

Loading next page...
 
/lp/springer_journal/the-distribution-of-mitoses-in-the-imaginal-disks-of-third-instar-G03DPzn9mT
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407070083
Publisher site
See Article on Publisher Site

Abstract

Development of Drosophila imaginal discs is accompanied by a high-ordered cell proliferation. However, the distinctions in the topographic distribution of mitoses at different developmental stages are insufficiently studied. In this work, we have analyzed the distribution of mitoses in the wing disc of third-instar larvae and determined the regions where mitotic clustering. The results obtained demonstrate that the proliferation rate is region-specific, which is determined by the location of cell cycle regulators and/or the location of growth factors. A comparison of the topography of mitoses with the activity patterns of the regulatory regions of gene string (stg), a known regulator of the mitotic M phase, has demonstrated a similarity between the topography and the activity pattern of one of these regions. The similarity between mitotic distributions in the left and right discs of the same larva (compared with the similarity of gene neuralized expression patterns is considered, and the degree of histone H3 phosphorylation at various mitotic stages is analyzed.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 23, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off