The Dirac–Hestenes Equation and its Relation with the Relativistic de Broglie–Bohm Theory

The Dirac–Hestenes Equation and its Relation with the Relativistic de Broglie–Bohm Theory In this paper we provide using the Clifford and spin-Clifford formalism and some few results of the extensor calculus a derivation of the conservation laws that follow directly from the Dirac–Hestenes equation (DHE) describing a Dirac–Hestenes spinor field (DHSF) in interaction with an external electromagnetic field without using the Lagrangian formalism. In particular, we show that the energy-momentum and total angular momentum extensors of a DHSF is not conserved in spacetime regions permitting the existence of a null electromagnetic field F but a non null electromagnetic potential $$A $$ A . These results have been used together with some others recently obtained (e.g., that the classical relativistic Hamilton–Jacobi equation is equivalent to a DHE satisfied by a particular class of DHSF) to obtain the correct relativistic quantum potential when the Dirac theory is interpreted as a de Broglie–Bohm theory. Some results appearing in the literature on this issue are criticized and the origin of some misconceptions is detailed with a rigorous mathematical analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Applied Clifford Algebras Springer Journals

The Dirac–Hestenes Equation and its Relation with the Relativistic de Broglie–Bohm Theory

Loading next page...
 
/lp/springer_journal/the-dirac-hestenes-equation-and-its-relation-with-the-relativistic-de-m5tT49WYG1
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing
Subject
Physics; Mathematical Methods in Physics; Theoretical, Mathematical and Computational Physics; Applications of Mathematics; Physics, general
ISSN
0188-7009
eISSN
1661-4909
D.O.I.
10.1007/s00006-017-0779-x
Publisher site
See Article on Publisher Site

Abstract

In this paper we provide using the Clifford and spin-Clifford formalism and some few results of the extensor calculus a derivation of the conservation laws that follow directly from the Dirac–Hestenes equation (DHE) describing a Dirac–Hestenes spinor field (DHSF) in interaction with an external electromagnetic field without using the Lagrangian formalism. In particular, we show that the energy-momentum and total angular momentum extensors of a DHSF is not conserved in spacetime regions permitting the existence of a null electromagnetic field F but a non null electromagnetic potential $$A $$ A . These results have been used together with some others recently obtained (e.g., that the classical relativistic Hamilton–Jacobi equation is equivalent to a DHE satisfied by a particular class of DHSF) to obtain the correct relativistic quantum potential when the Dirac theory is interpreted as a de Broglie–Bohm theory. Some results appearing in the literature on this issue are criticized and the origin of some misconceptions is detailed with a rigorous mathematical analysis.

Journal

Advances in Applied Clifford AlgebrasSpringer Journals

Published: Apr 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off