The Dirac–Frenkel Principle for Reduced Density Matrices, and the Bogoliubov–de Gennes Equations

The Dirac–Frenkel Principle for Reduced Density Matrices, and the Bogoliubov–de Gennes Equations The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annales Henri Poincaré Springer Journals

The Dirac–Frenkel Principle for Reduced Density Matrices, and the Bogoliubov–de Gennes Equations

Loading next page...
 
/lp/springer_journal/the-dirac-frenkel-principle-for-reduced-density-matrices-and-the-9U0H2H4gLU
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by The Author(s)
Subject
Physics; Theoretical, Mathematical and Computational Physics; Dynamical Systems and Ergodic Theory; Quantum Physics; Mathematical Methods in Physics; Classical and Quantum Gravitation, Relativity Theory; Elementary Particles, Quantum Field Theory
ISSN
1424-0637
eISSN
1424-0661
D.O.I.
10.1007/s00023-018-0644-z
Publisher site
See Article on Publisher Site

Abstract

The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities.

Journal

Annales Henri PoincaréSpringer Journals

Published: Jan 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off