The delineation of agricultural management zones with high resolution remotely sensed data

The delineation of agricultural management zones with high resolution remotely sensed data Remote sensing (RS) techniques have been widely considered to be a promising source of information for land management decisions. The objective of this study was to develop and compare different methods of delineating management zones (MZs) in a field of winter wheat. Soil and yield samples were collected, and five main crop nutrients were analyzed: total nitrogen (TN), nitrate nitrogen (NN), available phosphorus (AP), extractable potassium (EP) and organic matter (OM). At the wheat heading stage, a scene of Quickbird imagery was acquired and processed, and the optimized soil-adjusted vegetation index (OSAVI) was determined. A fuzzy k-means clustering algorithm was used to define MZs, along with fuzzy performance index (FPI), and modified partition entropy (MPE) for determining the optimal number of clusters. The results showed that the optimal number of MZs for the present study area was three. The MZs were delineated in three ways; based on soil and yield data, crop RS information and the combination of soil, yield and RS information. The evaluation of each set of MZs showed that the three methods of delineating zones can all decrease the variance of the crop nutrients, wheat spectral parameters and yield within the different zones. Considering the consistent relationship between the crop nutrients, wheat yield and the wheat spectral parameters, satellite remote sensing shows promise as a tool for assessing the variation in soil properties and yield in arable fields. The results of this study suggest that management zone delineation using RS data was reliable and feasible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

The delineation of agricultural management zones with high resolution remotely sensed data

Loading next page...
 
/lp/springer_journal/the-delineation-of-agricultural-management-zones-with-high-resolution-xoV1aLHpIi
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-009-9108-2
Publisher site
See Article on Publisher Site

Abstract

Remote sensing (RS) techniques have been widely considered to be a promising source of information for land management decisions. The objective of this study was to develop and compare different methods of delineating management zones (MZs) in a field of winter wheat. Soil and yield samples were collected, and five main crop nutrients were analyzed: total nitrogen (TN), nitrate nitrogen (NN), available phosphorus (AP), extractable potassium (EP) and organic matter (OM). At the wheat heading stage, a scene of Quickbird imagery was acquired and processed, and the optimized soil-adjusted vegetation index (OSAVI) was determined. A fuzzy k-means clustering algorithm was used to define MZs, along with fuzzy performance index (FPI), and modified partition entropy (MPE) for determining the optimal number of clusters. The results showed that the optimal number of MZs for the present study area was three. The MZs were delineated in three ways; based on soil and yield data, crop RS information and the combination of soil, yield and RS information. The evaluation of each set of MZs showed that the three methods of delineating zones can all decrease the variance of the crop nutrients, wheat spectral parameters and yield within the different zones. Considering the consistent relationship between the crop nutrients, wheat yield and the wheat spectral parameters, satellite remote sensing shows promise as a tool for assessing the variation in soil properties and yield in arable fields. The results of this study suggest that management zone delineation using RS data was reliable and feasible.

Journal

Precision AgricultureSpringer Journals

Published: Feb 11, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off