The Death of Ouabain-Treated Renal Epithelial C11-MDCK Cells is Not Mediated by Swelling-Induced Plasma Membrane Rupture

The Death of Ouabain-Treated Renal Epithelial C11-MDCK Cells is Not Mediated by Swelling-Induced... This study examined the role of cell volume modulation in plasma membrane rupture and death documented in ouabain-treated renal epithelial cells. Long-term exposure to ouabain caused massive death of C11-MDCK (Madin-Darby canine kidney) epithelial cells, documented by their detachment, chromatin cleavage and complete loss of lactate dehydrogenase (LDH), but did not affect the survival of vascular smooth muscle cells (VSMCs) from the rat aorta. Unlike the distinct impact on cell survival, 2-h exposure to ouabain led to sharp elevation of the [Na+]i/[K+]i ratio in both cell types. A similar increment of Na i + content was evoked by sustained inhibition of Na+,K+-ATPase in K+-free medium. However, in contrast to ouabain, C11-MDCK cells survived perfectly during 24-h exposure to K+-free medium. At 3 h, the volume of ouabain-treated C11-MDCK cells and VSMCs, measured by the recently developed dual-image surface reconstruction technique, was increased by 16 and 12%, respectively, whereas 5–10 min before the detachment of ouabain-treated C11-MDCK cells, their volume was augmented by ~30–40%. To examine the role of modest swelling in the plasma membrane rupture of ouabain-treated cells, we compared actions of hypotonic medium on volume and LDH release. We observed that LDH release from hyposmotically swollen C11-MDCK cells was triggered when their volume was increased by approximately fivefold. Thus, our results showed that the rupture of plasma membranes in ouabain-treated C11-MDCK cells was not directly caused by cell volume modulation evoked by Na+,K+-ATPase inhibition and inversion of the [Na+]i/[K+]i ratio. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Death of Ouabain-Treated Renal Epithelial C11-MDCK Cells is Not Mediated by Swelling-Induced Plasma Membrane Rupture

Loading next page...
 
/lp/springer_journal/the-death-of-ouabain-treated-renal-epithelial-c11-mdck-cells-is-not-7g1ZsWUfrO
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9371-9
Publisher site
See Article on Publisher Site

Abstract

This study examined the role of cell volume modulation in plasma membrane rupture and death documented in ouabain-treated renal epithelial cells. Long-term exposure to ouabain caused massive death of C11-MDCK (Madin-Darby canine kidney) epithelial cells, documented by their detachment, chromatin cleavage and complete loss of lactate dehydrogenase (LDH), but did not affect the survival of vascular smooth muscle cells (VSMCs) from the rat aorta. Unlike the distinct impact on cell survival, 2-h exposure to ouabain led to sharp elevation of the [Na+]i/[K+]i ratio in both cell types. A similar increment of Na i + content was evoked by sustained inhibition of Na+,K+-ATPase in K+-free medium. However, in contrast to ouabain, C11-MDCK cells survived perfectly during 24-h exposure to K+-free medium. At 3 h, the volume of ouabain-treated C11-MDCK cells and VSMCs, measured by the recently developed dual-image surface reconstruction technique, was increased by 16 and 12%, respectively, whereas 5–10 min before the detachment of ouabain-treated C11-MDCK cells, their volume was augmented by ~30–40%. To examine the role of modest swelling in the plasma membrane rupture of ouabain-treated cells, we compared actions of hypotonic medium on volume and LDH release. We observed that LDH release from hyposmotically swollen C11-MDCK cells was triggered when their volume was increased by approximately fivefold. Thus, our results showed that the rupture of plasma membranes in ouabain-treated C11-MDCK cells was not directly caused by cell volume modulation evoked by Na+,K+-ATPase inhibition and inversion of the [Na+]i/[K+]i ratio.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 17, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off