The copper complexation ability of a synthetic humic-like acid formed by an abiotic humification process and the effect of experimental factors on its copper complexation ability

The copper complexation ability of a synthetic humic-like acid formed by an abiotic humification... Humic acids have an important impact on the distribution, toxicity, and bioavailability of hazardous metals in the environment. In this study, a synthetic humic-like acid (SHLA) was prepared by an abiotic humification process using catechol and glycine as humic precursors and a MnO2 catalyst. The effect of physico-chemical conditions (ionic strength from 0.01 to 0.5 M NaNO3, pH from 4 to 8, temperature from 25 to 45 °C, and humic acid concentration from 5 to 100 mg/L) on the complexation ability of SHLA for Cu2+ were investigated. A commercial humic acid (CHA, CAS: 1415-93-6) from Sigma-Aldrich was also studied for comparison. The results showed that for pH 4 to 8, the conditional stability constants (log K) of SHLA and CHA were in the range 5.63–8.62 and 4.87–6.23, respectively, and complexation capacities (CC) were 1.34–2.61 and 1.42–2.31 mmol/g, respectively. The Cu complexation ability of SHLA was higher than that of the CHA due to its higher number of acidic functional groups (SHLA 19.19 mmol/g; CHA 3.87 mmol/g), extent of humification and aromaticity (AL/AR: 0.333 (SHLA); 1.554 (CHA)), and O-alkyl functional groups (SHLA 15.56%; CHA 3.45%). The log K and complexation efficiency (fraction of metal bound to SHLA) of SHLA were higher at higher pH, lower ionic strength, higher temperature, and higher SHLA concentration. Overall, SHLA was a good and promising complexation agent for copper in both soil washing of copper contaminated soil and the treatment of copper-containing wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

The copper complexation ability of a synthetic humic-like acid formed by an abiotic humification process and the effect of experimental factors on its copper complexation ability

Loading next page...
 
/lp/springer_journal/the-copper-complexation-ability-of-a-synthetic-humic-like-acid-formed-aM0gGl0uOz
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1836-2
Publisher site
See Article on Publisher Site

Abstract

Humic acids have an important impact on the distribution, toxicity, and bioavailability of hazardous metals in the environment. In this study, a synthetic humic-like acid (SHLA) was prepared by an abiotic humification process using catechol and glycine as humic precursors and a MnO2 catalyst. The effect of physico-chemical conditions (ionic strength from 0.01 to 0.5 M NaNO3, pH from 4 to 8, temperature from 25 to 45 °C, and humic acid concentration from 5 to 100 mg/L) on the complexation ability of SHLA for Cu2+ were investigated. A commercial humic acid (CHA, CAS: 1415-93-6) from Sigma-Aldrich was also studied for comparison. The results showed that for pH 4 to 8, the conditional stability constants (log K) of SHLA and CHA were in the range 5.63–8.62 and 4.87–6.23, respectively, and complexation capacities (CC) were 1.34–2.61 and 1.42–2.31 mmol/g, respectively. The Cu complexation ability of SHLA was higher than that of the CHA due to its higher number of acidic functional groups (SHLA 19.19 mmol/g; CHA 3.87 mmol/g), extent of humification and aromaticity (AL/AR: 0.333 (SHLA); 1.554 (CHA)), and O-alkyl functional groups (SHLA 15.56%; CHA 3.45%). The log K and complexation efficiency (fraction of metal bound to SHLA) of SHLA were higher at higher pH, lower ionic strength, higher temperature, and higher SHLA concentration. Overall, SHLA was a good and promising complexation agent for copper in both soil washing of copper contaminated soil and the treatment of copper-containing wastewater.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off