The conversion of natural gas to higher hydrocarbons using a microwave plasma and catalysts

The conversion of natural gas to higher hydrocarbons using a microwave plasma and catalysts Methane, the major constituent of natural gas, had been converted to higher hydrocarbons by a microwave plasma. The yield of C2+ products increased from 29.2% to 42.2% with increasing the plasma power and decreasing the flow rate of methane. When the catalysts were used in the plasma reactor, the selectivities of ethylene and acetylene increased while the yield of C2+ remained constant. Among the various catalysts used, the Fe catalyst showed the highest ethylene selectivity of 30%. When we introduced the actual natural gas, more C2+ products were obtained (46%). This is due to the ethane and propane in the natural gas. When an electric field inductance for evolving the high plasma was applied, a high yield in C2+ products of 63.7% was obtained for the Pd-Ni bimetal catalyst. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

The conversion of natural gas to higher hydrocarbons using a microwave plasma and catalysts

Loading next page...
 
/lp/springer_journal/the-conversion-of-natural-gas-to-higher-hydrocarbons-using-a-microwave-1PQueRD6yY
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00195
Publisher site
See Article on Publisher Site

Abstract

Methane, the major constituent of natural gas, had been converted to higher hydrocarbons by a microwave plasma. The yield of C2+ products increased from 29.2% to 42.2% with increasing the plasma power and decreasing the flow rate of methane. When the catalysts were used in the plasma reactor, the selectivities of ethylene and acetylene increased while the yield of C2+ remained constant. Among the various catalysts used, the Fe catalyst showed the highest ethylene selectivity of 30%. When we introduced the actual natural gas, more C2+ products were obtained (46%). This is due to the ethane and propane in the natural gas. When an electric field inductance for evolving the high plasma was applied, a high yield in C2+ products of 63.7% was obtained for the Pd-Ni bimetal catalyst.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off