The control of turbulent end-wall boundary layers using surface suction

The control of turbulent end-wall boundary layers using surface suction An experimental evaluation of the effects of spatially-limited (i.e. localized) surface suction on a turbulent junction flow was performed using Particle Image Velocimetry (PIV). The results indicate that surface suction can (1) weaken both the instantaneous turbulent vortex and its associated surface interactions in the symmetry plane, (2) effectively eliminate the presence of the average turbulent necklace vortex in the symmetry plane, and (3) weaken the average downstream extensions of the vortex. It was also established that suction effectively reduces the low frequency component of the Reynolds-stress in both the symmetry plane and trailing-edge cross-stream planes, and stabilizes the behavior of the trailing vortex legs. Experiments in Fluids Springer Journals

The control of turbulent end-wall boundary layers using surface suction

Loading next page...
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial