The contextual nature of the predictive power of statistically-based quarterly earnings models

The contextual nature of the predictive power of statistically-based quarterly earnings models We present new empirical evidence on the contextual nature of the predictive power of five statistically-based quarterly earnings expectation models evaluated on a holdout period spanning the twelve quarters from 2000–2002. In marked contrast to extant time-series work, the random walk with drift (RWD) model provides significantly more accurate pooled, one-step-ahead quarterly earnings predictions for a sample of high-technology firms (n = 202). In similar predictive comparisons, the Griffin-Watts (GW) ARIMA model provides significantly more accurate quarterly earnings predictions for a sample of regulated firms (n = 218). Finally, the RWD and GW ARIMA models jointly dominate the other expectation models (i.e., seasonal random walk with drift, the Brown-Rozeff (BR) and Foster (F) ARIMA models) for a default sample of firms (n = 796). We provide supplementary analyses that document the: (1) increased frequency of the number of loss quarters experienced by our sample firms in the holdout period (2000–2002) vis-à-vis the identification period (1990–1999); (2) reduced levels of earnings persistence for our sample firms relative to earnings persistence factors computed by Baginski et al. (2003) during earlier time periods (1970s–1980s); (3) relative impact on the predictive ability of the five expectation models conditioned upon the extent of analyst coverage of sample firms (i.e., no coverage, moderate coverage, and extensive coverage); and (4) sensitivity of predictive performance across subsets of regulated firms with the BR ARIMA model providing the most accurate predictions for utilities (n = 87) while the RWD model is superior for financial institutions (n = 131). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

The contextual nature of the predictive power of statistically-based quarterly earnings models

Loading next page...
 
/lp/springer_journal/the-contextual-nature-of-the-predictive-power-of-statistically-based-CVhgzvBMyA
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1007/s11156-006-0001-z
Publisher site
See Article on Publisher Site

References

  • The time-series properties of annual Earnings
    Albrecht, WS; Lookabill, LL; McKeown, JC
  • How naive is the stock market's use of earnings information?
    Ball, R; Bartov, E
  • The Feltham-Ohlson framework: Implications for empiricists
    Bernard, VL

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial