Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes

The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat... β-Conglycinin, a major seed protein in soybean, is composed of α, α′, and β subunits sharing a high homology among them. Despite its many health benefits, β-conglycinin has a lower amino acid score and lower functional gelling properties compared to glycinin, another major soybean seed protein. In addition, the α, α′, and β subunits also contain major allergens. A wild soybean (Glycine soja Sieb et Zucc.) line, ‘QT2’, lacks all of the β-conglycinin subunits, and the deficiency is controlled by a single dominant gene, Scg-1 (Suppressor of β-conglycinin). This gene was characterized using a soybean cultivar ‘Fukuyutaka’, ‘QY7-25’, (its near-isogenic line carrying the Scg-1 gene), and the F2 population derived from them. The physical map of the Scg-1 region covered by lambda phage genomic clones revealed that the two α-subunit genes, a β-subunit gene, and a pseudo α-subunit gene were closely organized. The two α-subunit genes were arranged in a tail-to-tail orientation, and the genes were separated by 197 bp in Scg-1 compared to 3.3 kb in the normal allele (scg-1). In addition, small RNA was detected in immature seeds of the mutants by northern blot analysis using an RNA probe of the α subunit. These results strongly suggest that β-conglycinin deficiency in QT2 is controlled by post-transcriptional gene silencing through the inverted repeat of the α subunits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes

Loading next page...
1
 
/lp/springer_journal/the-conglycinin-deficiency-in-wild-soybean-is-associated-with-the-tail-f53wUFpfGh

References (45)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Sciences; Plant Pathology; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-011-9865-y
pmid
22193750
Publisher site
See Article on Publisher Site

Abstract

β-Conglycinin, a major seed protein in soybean, is composed of α, α′, and β subunits sharing a high homology among them. Despite its many health benefits, β-conglycinin has a lower amino acid score and lower functional gelling properties compared to glycinin, another major soybean seed protein. In addition, the α, α′, and β subunits also contain major allergens. A wild soybean (Glycine soja Sieb et Zucc.) line, ‘QT2’, lacks all of the β-conglycinin subunits, and the deficiency is controlled by a single dominant gene, Scg-1 (Suppressor of β-conglycinin). This gene was characterized using a soybean cultivar ‘Fukuyutaka’, ‘QY7-25’, (its near-isogenic line carrying the Scg-1 gene), and the F2 population derived from them. The physical map of the Scg-1 region covered by lambda phage genomic clones revealed that the two α-subunit genes, a β-subunit gene, and a pseudo α-subunit gene were closely organized. The two α-subunit genes were arranged in a tail-to-tail orientation, and the genes were separated by 197 bp in Scg-1 compared to 3.3 kb in the normal allele (scg-1). In addition, small RNA was detected in immature seeds of the mutants by northern blot analysis using an RNA probe of the α subunit. These results strongly suggest that β-conglycinin deficiency in QT2 is controlled by post-transcriptional gene silencing through the inverted repeat of the α subunits.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 23, 2011

There are no references for this article.