The complex developmental expression of a novel stress-responsive barley Ltp gene is determined by a shortened promoter sequence

The complex developmental expression of a novel stress-responsive barley Ltp gene is determined... The search for a cereal promoter capable of driving preferential transgene expression in the pericarp epidermis (epicarp) of developing barley (Hordeum vulgare L.) resulted in the cloning of a novel gene. This encoded a polypeptide of 124 amino acids showing 87 identity with WBP1A, a wheat lipid transfer protein (LTP), but much lower homology to other barley LTPs. In addition to the epicarp, this Ltp-like gene, Ltp6, is highly expressed in coleoptiles and embryos under normal growth conditions. Messenger RNA levels increased in seedling tissues during salt and cold treatments and under applied abscisic acid (ABA) and salicylic acid (SA). Taken together, Ltp6 tissue-specific and response patterns are distinct from other known barley Ltp genes. Inverse PCR was used to derive 2345 bp of upstreamLtp6 sequence. The level of transcription conferred by different promoter deletion constructs was assessed by quantitative real time RT-PCR using gfpas a reporter in transient expression assays. All constructs containing at least 192 bp of upstream sequence and the 5′UTR conferred tissue-specific expression and retained most of the promoter strength. Deletion of 64 bp (−192/−128) from this upstream sequence reduced expression levels by 80. Moreover, a minimal 247 bp Ltp6promoter continuously drove gfp expression during spike development, from early ovary differentiation through its final expression in the epicarp and during embryogenesis and germination in transgenic barley, reproducing the expression pattern of the native gene. The potential use of this promoter sequence for targeting transgene-mediated disease resistance in barley and wheat is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The complex developmental expression of a novel stress-responsive barley Ltp gene is determined by a shortened promoter sequence

Loading next page...
 
/lp/springer_journal/the-complex-developmental-expression-of-a-novel-stress-responsive-lO0WJE0o0a
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-6769-0
Publisher site
See Article on Publisher Site

Abstract

The search for a cereal promoter capable of driving preferential transgene expression in the pericarp epidermis (epicarp) of developing barley (Hordeum vulgare L.) resulted in the cloning of a novel gene. This encoded a polypeptide of 124 amino acids showing 87 identity with WBP1A, a wheat lipid transfer protein (LTP), but much lower homology to other barley LTPs. In addition to the epicarp, this Ltp-like gene, Ltp6, is highly expressed in coleoptiles and embryos under normal growth conditions. Messenger RNA levels increased in seedling tissues during salt and cold treatments and under applied abscisic acid (ABA) and salicylic acid (SA). Taken together, Ltp6 tissue-specific and response patterns are distinct from other known barley Ltp genes. Inverse PCR was used to derive 2345 bp of upstreamLtp6 sequence. The level of transcription conferred by different promoter deletion constructs was assessed by quantitative real time RT-PCR using gfpas a reporter in transient expression assays. All constructs containing at least 192 bp of upstream sequence and the 5′UTR conferred tissue-specific expression and retained most of the promoter strength. Deletion of 64 bp (−192/−128) from this upstream sequence reduced expression levels by 80. Moreover, a minimal 247 bp Ltp6promoter continuously drove gfp expression during spike development, from early ovary differentiation through its final expression in the epicarp and during embryogenesis and germination in transgenic barley, reproducing the expression pattern of the native gene. The potential use of this promoter sequence for targeting transgene-mediated disease resistance in barley and wheat is discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 25, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off