The complete genome sequence of a novel maize-associated totivirus

The complete genome sequence of a novel maize-associated totivirus Deep sequencing of small RNA (sRNA) populations in maize plants from southwest China resulted in the identification of a previously unknown dsRNA virus with a sequence and genome organization resembling that of a totivirus. The complete viral genome is 3,956 nucleotides in length and contains two open reading frames (ORFs) with the potential to produce a ORF1-ORF2 fusion protein through a -1 ribosomal frameshift translation mechanism. ORF1 encodes the putative capsid protein (CP), whereas the predicted product of ORF2 contains motifs typical of an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis using the amino acid sequences of putative RdRp fusion proteins showed that the new virus was grouped in a clade together with the totiviruses, suggesting that it is a new member of the genus Totivirus of the family Totiviridae . The virus is tentatively named “maize-associated totivirus (MATV)”. Our findings demonstrate that it is feasible to identify totiviruses by deep sequencing of small RNAs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

The complete genome sequence of a novel maize-associated totivirus

Loading next page...
 
/lp/springer_journal/the-complete-genome-sequence-of-a-novel-maize-associated-totivirus-JB9cZTEFhD
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2657-y
Publisher site
See Article on Publisher Site

Abstract

Deep sequencing of small RNA (sRNA) populations in maize plants from southwest China resulted in the identification of a previously unknown dsRNA virus with a sequence and genome organization resembling that of a totivirus. The complete viral genome is 3,956 nucleotides in length and contains two open reading frames (ORFs) with the potential to produce a ORF1-ORF2 fusion protein through a -1 ribosomal frameshift translation mechanism. ORF1 encodes the putative capsid protein (CP), whereas the predicted product of ORF2 contains motifs typical of an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis using the amino acid sequences of putative RdRp fusion proteins showed that the new virus was grouped in a clade together with the totiviruses, suggesting that it is a new member of the genus Totivirus of the family Totiviridae . The virus is tentatively named “maize-associated totivirus (MATV)”. Our findings demonstrate that it is feasible to identify totiviruses by deep sequencing of small RNAs.

Journal

Archives of VirologySpringer Journals

Published: Feb 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off