Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The collisional Penrose process

The collisional Penrose process Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole’s event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png General Relativity and Gravitation Springer Journals

The collisional Penrose process

General Relativity and Gravitation , Volume 50 (6) – Jun 5, 2018

Loading next page...
 
/lp/springer_journal/the-collisional-penrose-process-p0te93AfLk
Publisher
Springer Journals
Copyright
Copyright © 2018 by This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection
Subject
Physics; Theoretical, Mathematical and Computational Physics; Classical and Quantum Gravitation, Relativity Theory; Differential Geometry; Astronomy, Astrophysics and Cosmology; Quantum Physics
ISSN
0001-7701
eISSN
1572-9532
DOI
10.1007/s10714-018-2373-5
Publisher site
See Article on Publisher Site

Abstract

Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole’s event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole.

Journal

General Relativity and GravitationSpringer Journals

Published: Jun 5, 2018

References