The CLIC1 Chloride Channel Is Regulated by the Cystic Fibrosis Transmembrane Conductance Regulator when Expressed in Xenopus Oocytes

The CLIC1 Chloride Channel Is Regulated by the Cystic Fibrosis Transmembrane Conductance... CLIC proteins comprise a family of chloride channels whose physiological roles are uncertain. To gain further insight into possible means of CLIC1 channel activity regulation, this protein was expressed in Xenopus oocytes alone or in combination with the cystic fibrosis transmembrane conductance regulator (CFTR). Whole-cell currents were determined using two-electrode voltage-clamp methods. Expression of CLIC1 alone did not increase whole-cell conductance either at rest or in response to increased intracellular cyclic adenosine monophosphate (cAMP). However, expression of CLIC1 with CFTR led to increased cAMP-activated whole-cell currents compared to expression from the same amount of CFTR mRNA alone. IAA-94 is a drug known to inhibit CLIC family channels but not CFTR. In oocytes expressing both CLIC1 and CFTR, a fraction of the cAMP-activated whole-cell current was sensitive to IAA-94, whereas in oocytes expressing CFTR alone, the cAMP-stimulated current was resistant to the drug. Cell fractionation studies revealed that the presence of CFTR conferred cAMP-stimulated redistribution of a fraction of CLIC1 from a soluble to a membrane-associated form. We conclude that when expressed in Xenopus oocytes CFTR confers cAMP regulation to CLIC1 activity in the plasma membrane and that at least part of this regulation is due to recruitment of CLIC1 from the cytoplasm to the membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The CLIC1 Chloride Channel Is Regulated by the Cystic Fibrosis Transmembrane Conductance Regulator when Expressed in Xenopus Oocytes

Loading next page...
 
/lp/springer_journal/the-clic1-chloride-channel-is-regulated-by-the-cystic-fibrosis-0kGvQ5bVjv
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0059-5
Publisher site
See Article on Publisher Site

Abstract

CLIC proteins comprise a family of chloride channels whose physiological roles are uncertain. To gain further insight into possible means of CLIC1 channel activity regulation, this protein was expressed in Xenopus oocytes alone or in combination with the cystic fibrosis transmembrane conductance regulator (CFTR). Whole-cell currents were determined using two-electrode voltage-clamp methods. Expression of CLIC1 alone did not increase whole-cell conductance either at rest or in response to increased intracellular cyclic adenosine monophosphate (cAMP). However, expression of CLIC1 with CFTR led to increased cAMP-activated whole-cell currents compared to expression from the same amount of CFTR mRNA alone. IAA-94 is a drug known to inhibit CLIC family channels but not CFTR. In oocytes expressing both CLIC1 and CFTR, a fraction of the cAMP-activated whole-cell current was sensitive to IAA-94, whereas in oocytes expressing CFTR alone, the cAMP-stimulated current was resistant to the drug. Cell fractionation studies revealed that the presence of CFTR conferred cAMP-stimulated redistribution of a fraction of CLIC1 from a soluble to a membrane-associated form. We conclude that when expressed in Xenopus oocytes CFTR confers cAMP regulation to CLIC1 activity in the plasma membrane and that at least part of this regulation is due to recruitment of CLIC1 from the cytoplasm to the membrane.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 8, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off