The classification of wetlands: integration of top-down and bottom-up approaches and their significance for ecosystem service determination

The classification of wetlands: integration of top-down and bottom-up approaches and their... The typology of wetlands provides important information for both water resource managers and conservation planners. One of the most important aims of allocating wetlands to a certain type or class is to provide information about the ecosystem services that the wetland provides. There are two main approaches towards wetland classification. Firstly, there are top-down approaches whereby wetlands are divided into several categories based on a conceptual understanding of how the wetland functions (mostly with regards to water flows). Secondly there are bottom-up approaches whereby the classification of wetlands is based on the collection of data in the wetland that is then subjected to various clustering techniques (mostly with regards to biodiversity). The most utilized system of top-down classification assigns wetlands into hydrogeomorphic units, which function as a single unit in terms of hydrology and geomorphology. This type of classification is most useful for water resource planning, as it provides information about how the wetland is connected to the drainage network and what are the water inflows, throughflows and outflows of the wetland. The bottom-up classification approach typically focusses on the classification of wetland habitats rather than complete wetlands, where wetland habitat represents a spatial unit delineated on the basis of vegetation, embedded within the (complete) hydrogeomorphic unit, and defined as an area of wetland that is homogeneous in terms of opportunities for plant growth. At a broad scale, most ecosystem services can be superficially derived from the hydrogeomorphic unit type and the way water moves through a wetland, but habitat units and the plant species that define them would have a specific effect on the delivery of ecosystem services, for example, with different assemblages providing different resistance to flow. Some types of ecosystem services are exclusively linked to specific wetland habitats, especially provisioning services. For this reason, it is proposed that a combined approach of hydrogeomorphic classification together with a vegetation map, offers the maximum information value for ecosystem service determination. In order to account for the potential pitfall of “double counting” when combining the top-down and bottom-up approaches, each service needs to be considered individually with reference to the degree to which a service is either: (a) primarily determined by HGM class/attributes and modified by the vegetation class/attributes; or (b) primarily determined by the vegetation class/attributes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wetlands Ecology and Management Springer Journals

The classification of wetlands: integration of top-down and bottom-up approaches and their significance for ecosystem service determination

Loading next page...
 
/lp/springer_journal/the-classification-of-wetlands-integration-of-top-down-and-bottom-up-0u1MZ7grN3
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Freshwater & Marine Ecology; Conservation Biology/Ecology; Environmental Law/Policy/Ecojustice; Marine & Freshwater Sciences; Hydrology/Water Resources; Water Quality/Water Pollution
ISSN
0923-4861
eISSN
1572-9834
D.O.I.
10.1007/s11273-017-9585-4
Publisher site
See Article on Publisher Site

Abstract

The typology of wetlands provides important information for both water resource managers and conservation planners. One of the most important aims of allocating wetlands to a certain type or class is to provide information about the ecosystem services that the wetland provides. There are two main approaches towards wetland classification. Firstly, there are top-down approaches whereby wetlands are divided into several categories based on a conceptual understanding of how the wetland functions (mostly with regards to water flows). Secondly there are bottom-up approaches whereby the classification of wetlands is based on the collection of data in the wetland that is then subjected to various clustering techniques (mostly with regards to biodiversity). The most utilized system of top-down classification assigns wetlands into hydrogeomorphic units, which function as a single unit in terms of hydrology and geomorphology. This type of classification is most useful for water resource planning, as it provides information about how the wetland is connected to the drainage network and what are the water inflows, throughflows and outflows of the wetland. The bottom-up classification approach typically focusses on the classification of wetland habitats rather than complete wetlands, where wetland habitat represents a spatial unit delineated on the basis of vegetation, embedded within the (complete) hydrogeomorphic unit, and defined as an area of wetland that is homogeneous in terms of opportunities for plant growth. At a broad scale, most ecosystem services can be superficially derived from the hydrogeomorphic unit type and the way water moves through a wetland, but habitat units and the plant species that define them would have a specific effect on the delivery of ecosystem services, for example, with different assemblages providing different resistance to flow. Some types of ecosystem services are exclusively linked to specific wetland habitats, especially provisioning services. For this reason, it is proposed that a combined approach of hydrogeomorphic classification together with a vegetation map, offers the maximum information value for ecosystem service determination. In order to account for the potential pitfall of “double counting” when combining the top-down and bottom-up approaches, each service needs to be considered individually with reference to the degree to which a service is either: (a) primarily determined by HGM class/attributes and modified by the vegetation class/attributes; or (b) primarily determined by the vegetation class/attributes.

Journal

Wetlands Ecology and ManagementSpringer Journals

Published: Nov 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off