The circadian rhythms of valve movements in the mussel Mytilus galloprovincialis

The circadian rhythms of valve movements in the mussel Mytilus galloprovincialis The long-term (10–30 day) continuous recording of valve movements in the mussel Mytilus galloprovincialis was carried out in the laboratory under nearly natural conditions. Fourier analysis revealed the circadian (close to the diurnal) rhythm of the valve activity, the phase of which is readily shifted by a shift in the beginning of the daytime, since the light regime is one of the main factors determining the circadian rhythm. The circadian rhythm was manifested in the daily dynamics of mussel valve activity: in the daytime, mussels hold their valves closed more often than at night. This behavior may be a protective response, namely the “shadow reflex”: mussels close their valves upon a sudden decrease in illumination, thus protecting themselves from possible predators. Circadian activity can mask a mussel’s response to environmental pollution; therefore, regular valve closure should be taken into account in early warning systems such as “MusselMonitor®” with a correction for the season of the year, time of day, and other factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

The circadian rhythms of valve movements in the mussel Mytilus galloprovincialis

Loading next page...
 
/lp/springer_journal/the-circadian-rhythms-of-valve-movements-in-the-mussel-mytilus-xfd2Dz5k4y
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1134/S1063074010060039
Publisher site
See Article on Publisher Site

Abstract

The long-term (10–30 day) continuous recording of valve movements in the mussel Mytilus galloprovincialis was carried out in the laboratory under nearly natural conditions. Fourier analysis revealed the circadian (close to the diurnal) rhythm of the valve activity, the phase of which is readily shifted by a shift in the beginning of the daytime, since the light regime is one of the main factors determining the circadian rhythm. The circadian rhythm was manifested in the daily dynamics of mussel valve activity: in the daytime, mussels hold their valves closed more often than at night. This behavior may be a protective response, namely the “shadow reflex”: mussels close their valves upon a sudden decrease in illumination, thus protecting themselves from possible predators. Circadian activity can mask a mussel’s response to environmental pollution; therefore, regular valve closure should be taken into account in early warning systems such as “MusselMonitor®” with a correction for the season of the year, time of day, and other factors.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Jan 18, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off