The Chemical Nature of the Polar Functional Group of Oxidized Acyl Chain Uniquely Modifies the Physicochemical Properties of Oxidized Phospholipid-Containing Lipid Particles

The Chemical Nature of the Polar Functional Group of Oxidized Acyl Chain Uniquely Modifies the... Oxidative modification of phospholipids generates a variety of oxidized phospholipid (Ox-PL) species which differ considerably in their chemical compositions and molecular structures. Recent results suggest that even closely related Ox-PL species can have considerably different biological effects. However, the molecular mechanism for this is not yet clear. In truncated Ox-PLs (tOx-PLs) the fatty acyl chain is shorter in length than the parent nonoxidized phospholipid molecules and contains a polar functional group(s). In a previous study we showed that two closely related tOx-PL species having a similar polar functional group and differing only in the length of the oxidized fatty acyl chain exerts significantly different effects on the physicochemical properties of the nonoxidized phospholipid particles containing these lipids (Kar et al., Chem Phys Lipids 164:54–61, 2011). In this study we have characterized the effect of polar functional groups of oxidized fatty acyl chain on the physicochemical properties of the nonoxidized phospholipid particles containing these lipids. Our results show that Ox-PL species differing only in the chemical nature of polar functional groups in their oxidized fatty acyl chain modify the properties of nonoxidized phospholipid particles containing them in a distinctive way. These results indicate that different species of Ox-PLs induce unique changes in the physicochemical properties of lipid particles/membranes containing them and that this may lead to their different biological effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Chemical Nature of the Polar Functional Group of Oxidized Acyl Chain Uniquely Modifies the Physicochemical Properties of Oxidized Phospholipid-Containing Lipid Particles

Loading next page...
 
/lp/springer_journal/the-chemical-nature-of-the-polar-functional-group-of-oxidized-acyl-t0jaHd6xuM
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9556-5
Publisher site
See Article on Publisher Site

Abstract

Oxidative modification of phospholipids generates a variety of oxidized phospholipid (Ox-PL) species which differ considerably in their chemical compositions and molecular structures. Recent results suggest that even closely related Ox-PL species can have considerably different biological effects. However, the molecular mechanism for this is not yet clear. In truncated Ox-PLs (tOx-PLs) the fatty acyl chain is shorter in length than the parent nonoxidized phospholipid molecules and contains a polar functional group(s). In a previous study we showed that two closely related tOx-PL species having a similar polar functional group and differing only in the length of the oxidized fatty acyl chain exerts significantly different effects on the physicochemical properties of the nonoxidized phospholipid particles containing these lipids (Kar et al., Chem Phys Lipids 164:54–61, 2011). In this study we have characterized the effect of polar functional groups of oxidized fatty acyl chain on the physicochemical properties of the nonoxidized phospholipid particles containing these lipids. Our results show that Ox-PL species differing only in the chemical nature of polar functional groups in their oxidized fatty acyl chain modify the properties of nonoxidized phospholipid particles containing them in a distinctive way. These results indicate that different species of Ox-PLs induce unique changes in the physicochemical properties of lipid particles/membranes containing them and that this may lead to their different biological effects.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 15, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off