Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The CFTR Chloride Channel: Nucleotide Interactions and Temperature-dependent Gating

The CFTR Chloride Channel: Nucleotide Interactions and Temperature-dependent Gating The gating cycle of CFTR (Cystic Fibrosis Transmembrane conductance Regulator) chloride channels requires ATP hydrolysis and can be interrupted by exposure to the nonhydrolyzable nucleotide AMP-PNP. To further characterize nucleotide interactions and channel gating, we have studied the effects of AMP-PNP, protein kinase C (PKC) phosphorylation, and temperature on gating kinetics. The rate of channel locking increased from 1.05 × 10−3 sec−1 to 58.7 × 10−3 sec−1 when AMP-PNP concentration was raised from 0.5 to 5 mm in the presence of 1 mm MgATP and 180 nm protein kinase A catalytic subunit (PKA). Although rapid locking precluded estimation of P o or opening rate immediately after the addition of AMP-PNP to wild-type channels, analysis of locking rates in the presence of high AMP-PNP concentrations revealed two components. The appearance of a distinct, slow component at high [AMP-PNP] is evidence for AMP-PNP interactions at a second site, where competition with ATP would reduce P o and thereby delay locking. All channels exhibited locking when they were strongly phosphorylated by PKA, but not when exposed to PKC alone. AMP-PNP increased P o at temperatures above 30°C but did not cause locking, evidence that the stabilizing interactions between domains, which have been proposed to maintain CFTR in the open burst state, are relatively weak. The temperature dependence of normal CFTR gating by ATP was strongly asymmetric, with the opening rate being much more temperature sensitive (Q 10= 9.6) than the closing rate (Q 10= 3.6). These results are consistent with a cyclic model for gating of phosphorylated CFTR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The CFTR Chloride Channel: Nucleotide Interactions and Temperature-dependent Gating

Loading next page...
 
/lp/springer_journal/the-cftr-chloride-channel-nucleotide-interactions-and-temperature-biPs2FtiVt

References (26)

Publisher
Springer Journals
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
DOI
10.1007/s002329900370
Publisher site
See Article on Publisher Site

Abstract

The gating cycle of CFTR (Cystic Fibrosis Transmembrane conductance Regulator) chloride channels requires ATP hydrolysis and can be interrupted by exposure to the nonhydrolyzable nucleotide AMP-PNP. To further characterize nucleotide interactions and channel gating, we have studied the effects of AMP-PNP, protein kinase C (PKC) phosphorylation, and temperature on gating kinetics. The rate of channel locking increased from 1.05 × 10−3 sec−1 to 58.7 × 10−3 sec−1 when AMP-PNP concentration was raised from 0.5 to 5 mm in the presence of 1 mm MgATP and 180 nm protein kinase A catalytic subunit (PKA). Although rapid locking precluded estimation of P o or opening rate immediately after the addition of AMP-PNP to wild-type channels, analysis of locking rates in the presence of high AMP-PNP concentrations revealed two components. The appearance of a distinct, slow component at high [AMP-PNP] is evidence for AMP-PNP interactions at a second site, where competition with ATP would reduce P o and thereby delay locking. All channels exhibited locking when they were strongly phosphorylated by PKA, but not when exposed to PKC alone. AMP-PNP increased P o at temperatures above 30°C but did not cause locking, evidence that the stabilizing interactions between domains, which have been proposed to maintain CFTR in the open burst state, are relatively weak. The temperature dependence of normal CFTR gating by ATP was strongly asymmetric, with the opening rate being much more temperature sensitive (Q 10= 9.6) than the closing rate (Q 10= 3.6). These results are consistent with a cyclic model for gating of phosphorylated CFTR.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 1, 1998

There are no references for this article.