The calibration of (multi-) hot-wire probes. 1. Temperature calibration

The calibration of (multi-) hot-wire probes. 1. Temperature calibration We study the performance of the classical relation for the correction for ambient temperature drift of the signal of a hot-wire anemometer and the influence of practical assumptions. It is shown that most methods to estimate the operational temperature via the temperature/resistance coefficient lead to underestimation of the operational temperature and thus to overcorrection of signals for temperature drift. We found that, in the presence of a sensible heat flow, temperature fluctuations cannot be sufficiently removed from the hot-wire signal when one relies on temperature/resistance coefficients from literature. When only slow temperature drift is involved, most literature values give a satisfactory temperature correction, but this depends on the specific combination of a probe and a literature reference. Therefore it is generally advisable to calibrate the value. A method that uses a ratio of (measured) resistances as a function of temperature, which does not require estimation of the operational temperature of the wire, is shown to depend crucially on a parasitic resistance of a few tenths of an ohm. This parameter can be found by optimizing its value using data from a collection of velocity calibrations at different temperatures. This additional calibration alone suffices to estimate the operational temperature of the wire via optimization. A quick calibration procedure (15 min) is proposed and tested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The calibration of (multi-) hot-wire probes. 1. Temperature calibration

Loading next page...
 
/lp/springer_journal/the-calibration-of-multi-hot-wire-probes-1-temperature-calibration-OsWn6nEirA
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0677-y
Publisher site
See Article on Publisher Site

Abstract

We study the performance of the classical relation for the correction for ambient temperature drift of the signal of a hot-wire anemometer and the influence of practical assumptions. It is shown that most methods to estimate the operational temperature via the temperature/resistance coefficient lead to underestimation of the operational temperature and thus to overcorrection of signals for temperature drift. We found that, in the presence of a sensible heat flow, temperature fluctuations cannot be sufficiently removed from the hot-wire signal when one relies on temperature/resistance coefficients from literature. When only slow temperature drift is involved, most literature values give a satisfactory temperature correction, but this depends on the specific combination of a probe and a literature reference. Therefore it is generally advisable to calibrate the value. A method that uses a ratio of (measured) resistances as a function of temperature, which does not require estimation of the operational temperature of the wire, is shown to depend crucially on a parasitic resistance of a few tenths of an ohm. This parameter can be found by optimizing its value using data from a collection of velocity calibrations at different temperatures. This additional calibration alone suffices to estimate the operational temperature of the wire via optimization. A quick calibration procedure (15 min) is proposed and tested.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 7, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off