The Calculation of Intracellular Ion Concentrations and Membrane Potential from Cell-attached and Excised Patch Measurements. Cytosolic K+ Concentration and Membrane Potential in Vicia faba Guard Cells

The Calculation of Intracellular Ion Concentrations and Membrane Potential from Cell-attached and... Ion channel activity in cell-attached patch recordings shows channel behavior under more physiological conditions than whole-cell and excised patch measurements. Yet the analysis of cell-attached patch measurements is complicated by the fact that the system is ill defined with respect to the intracellular ion activities and the electrical potential actually experienced by the membrane patch. Therefore, of the several patch-clamp configurations, the information that is obtained from cell-attached patch measurements is the most ambiguous. The present study aims to achieve a better understanding of cell-attached patch measurements. Here we describe a method to calculate the intracellular ion concentration and membrane potential prevailing during cell-attached patch recording. The first step is an analysis of the importance of the input resistance of the intact cell on the cell-attached patch measurement. The second step, and actual calculation, is based on comparison of the single channel conductance and reversal potential in the cell-attached patch and excised patch configurations. The method is demonstrated with measurements of membrane potential and cytosolic K+ concentrations in Vicia faba guard cells. The approach described here provides an attractive alternative to the measurement of cytosolic ion concentrations with fluorescent probes or microelectrodes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Calculation of Intracellular Ion Concentrations and Membrane Potential from Cell-attached and Excised Patch Measurements. Cytosolic K+ Concentration and Membrane Potential in Vicia faba Guard Cells

Loading next page...
1
 
/lp/springer_journal/the-calculation-of-intracellular-ion-concentrations-and-membrane-8T1t0R8nf8
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900452
Publisher site
See Article on Publisher Site

Abstract

Ion channel activity in cell-attached patch recordings shows channel behavior under more physiological conditions than whole-cell and excised patch measurements. Yet the analysis of cell-attached patch measurements is complicated by the fact that the system is ill defined with respect to the intracellular ion activities and the electrical potential actually experienced by the membrane patch. Therefore, of the several patch-clamp configurations, the information that is obtained from cell-attached patch measurements is the most ambiguous. The present study aims to achieve a better understanding of cell-attached patch measurements. Here we describe a method to calculate the intracellular ion concentration and membrane potential prevailing during cell-attached patch recording. The first step is an analysis of the importance of the input resistance of the intact cell on the cell-attached patch measurement. The second step, and actual calculation, is based on comparison of the single channel conductance and reversal potential in the cell-attached patch and excised patch configurations. The method is demonstrated with measurements of membrane potential and cytosolic K+ concentrations in Vicia faba guard cells. The approach described here provides an attractive alternative to the measurement of cytosolic ion concentrations with fluorescent probes or microelectrodes.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 15, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off