The c-Jun N-terminal kinase (JNK) is involved in H5N1 influenza A virus RNA and protein synthesis

The c-Jun N-terminal kinase (JNK) is involved in H5N1 influenza A virus RNA and protein synthesis The activation of c-jun N-terminal kinases (JNK) was previously shown to be required for efficient influenza A virus replication, although a detailed mechanism has not been reported. In this study, we found that replication of H5N1 influenza virus was influenced by the JNK inhibitor SP600125. The results of time course experiments suggested that SP600125 inhibited an early post-entry step of viral infection but did not affect nucleocytoplasmic trafficking of the viral ribonucleoprotein complex. The levels of influenza virus genomic RNA (vRNA), but not the corresponding cRNA or mRNA, were specifically reduced by SP600125 in virus-infected cells, indicating that the JNK protein is intimately involved in vRNA synthesis. Additionally, SP600125 affected H5N1 virus protein synthesis, because NS1, PB1, PB2, HA and M1 protein production was impaired. Thus, our data demonstrated a critical role of the JNK protein in the regulation of vRNA and protein synthesis during virus infection. This enhances our understanding of the complicated signal transduction network involved in influenza A virus replication. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

The c-Jun N-terminal kinase (JNK) is involved in H5N1 influenza A virus RNA and protein synthesis

Loading next page...
 
/lp/springer_journal/the-c-jun-n-terminal-kinase-jnk-is-involved-in-h5n1-influenza-a-virus-5jX579ITwE
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2668-8
Publisher site
See Article on Publisher Site

Abstract

The activation of c-jun N-terminal kinases (JNK) was previously shown to be required for efficient influenza A virus replication, although a detailed mechanism has not been reported. In this study, we found that replication of H5N1 influenza virus was influenced by the JNK inhibitor SP600125. The results of time course experiments suggested that SP600125 inhibited an early post-entry step of viral infection but did not affect nucleocytoplasmic trafficking of the viral ribonucleoprotein complex. The levels of influenza virus genomic RNA (vRNA), but not the corresponding cRNA or mRNA, were specifically reduced by SP600125 in virus-infected cells, indicating that the JNK protein is intimately involved in vRNA synthesis. Additionally, SP600125 affected H5N1 virus protein synthesis, because NS1, PB1, PB2, HA and M1 protein production was impaired. Thus, our data demonstrated a critical role of the JNK protein in the regulation of vRNA and protein synthesis during virus infection. This enhances our understanding of the complicated signal transduction network involved in influenza A virus replication.

Journal

Archives of VirologySpringer Journals

Published: Feb 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off