The Brain as an Input–Output Model of the World

The Brain as an Input–Output Model of the World An underlying assumption in computational approaches in cognitive and brain sciences is that the nervous system is an input–output model of the world: Its input–output functions mirror certain relations in the target domains. I argue that the input–output modelling assumption plays distinct methodological and explanatory roles. Methodologically, input–output modelling serves to discover the computed function from environmental cues. Explanatorily, input–output modelling serves to account for the appropriateness of the computed function to the explanandum information-processing task. I compare very briefly the modelling explanation to mechanistic and optimality explanations, noting that in both cases the explanations can be seen as complementary rather than contrastive or competing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Minds and Machines Springer Journals

The Brain as an Input–Output Model of the World

Loading next page...
 
/lp/springer_journal/the-brain-as-an-input-output-model-of-the-world-DcQJWFlOc7
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Philosophy of Mind; Game Theory, Economics, Social and Behav. Sciences; Cognitive Psychology; Philosophy of Science; Theory of Computation
ISSN
0924-6495
eISSN
1572-8641
D.O.I.
10.1007/s11023-017-9443-4
Publisher site
See Article on Publisher Site

Abstract

An underlying assumption in computational approaches in cognitive and brain sciences is that the nervous system is an input–output model of the world: Its input–output functions mirror certain relations in the target domains. I argue that the input–output modelling assumption plays distinct methodological and explanatory roles. Methodologically, input–output modelling serves to discover the computed function from environmental cues. Explanatorily, input–output modelling serves to account for the appropriateness of the computed function to the explanandum information-processing task. I compare very briefly the modelling explanation to mechanistic and optimality explanations, noting that in both cases the explanations can be seen as complementary rather than contrastive or competing.

Journal

Minds and MachinesSpringer Journals

Published: Oct 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off