The Biogenesis of the Photosynthetic Apparatus and the Activity of Chlorophyll Biosynthesis in a Plastome Mutant of Sunflower

The Biogenesis of the Photosynthetic Apparatus and the Activity of Chlorophyll Biosynthesis in a... It was demonstrated that, in the phenotypically colorless leaves of a sunflower (Helianthus annuusL.) plastome mutant with a heavily reduced level of chlorophyll, all pigment–protein complexes of the photosynthetic apparatus typical for the wild type were present. However, the ratio between them was changed. During aging of the mutant leaves, pigment–protein complexes of photosystem I were destroyed first followed by those of photosystem II. Chlorophyll a/b-containing light-harvesting complex II turned out to be the most stable. This conforms to an increased content of lutein and violaxanthin in mutant leaves. A synchrony of the decreases in the chlorophyll and 5-aminolevulinic acid (ALA) contents throughout all ontogenetic stages of the colorless mutant leaves made it possible to suggest that a decrease in the synthesis and resynthesis of chlorophyll during the formation and development of such leaves is caused by the inhibition of an initial stage of this process, namely, the biosynthesis of ALA molecules. The activity of the enzymes converting ALA into protochlorophyllide did not limit chlorophyll biosynthesis. Possible mechanisms controlling the synthesis of ALA destined for chlorophyll formation are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

The Biogenesis of the Photosynthetic Apparatus and the Activity of Chlorophyll Biosynthesis in a Plastome Mutant of Sunflower

Loading next page...
1
 
/lp/springer_journal/the-biogenesis-of-the-photosynthetic-apparatus-and-the-activity-of-OlKvNNQ4EW
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1009083513313
Publisher site
See Article on Publisher Site

Abstract

It was demonstrated that, in the phenotypically colorless leaves of a sunflower (Helianthus annuusL.) plastome mutant with a heavily reduced level of chlorophyll, all pigment–protein complexes of the photosynthetic apparatus typical for the wild type were present. However, the ratio between them was changed. During aging of the mutant leaves, pigment–protein complexes of photosystem I were destroyed first followed by those of photosystem II. Chlorophyll a/b-containing light-harvesting complex II turned out to be the most stable. This conforms to an increased content of lutein and violaxanthin in mutant leaves. A synchrony of the decreases in the chlorophyll and 5-aminolevulinic acid (ALA) contents throughout all ontogenetic stages of the colorless mutant leaves made it possible to suggest that a decrease in the synthesis and resynthesis of chlorophyll during the formation and development of such leaves is caused by the inhibition of an initial stage of this process, namely, the biosynthesis of ALA molecules. The activity of the enzymes converting ALA into protochlorophyllide did not limit chlorophyll biosynthesis. Possible mechanisms controlling the synthesis of ALA destined for chlorophyll formation are discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off