The Berlin City Ring—a Testbed for Future Metropolitan Networks

The Berlin City Ring—a Testbed for Future Metropolitan Networks Dense wavelength division multiplexing (DWDM) is the key technology for future data transport. It combines transmission of data rates up to several Tb/s [1] with an overall transparency to data format and bit rate. The expected huge bandwidth demand in the near future requires an adaptability of DWDM transmission technology to metropolitan networks. Therefore, dynamically configurable DWDM transmission technology for bit rates up to 10 Gb/s has been investigated in a field trial in Berlin. This field trial is part of the KomNet research project. It is the goal of this field trial to optimize DWDM systems to metropolitan network requirements. Several aspects are in this paper: (i) A network simulation tool is described which helps to enlighten the profitability of statically and dynamically configured network nodes. (ii) A newly developed technology to add and drop single-wavelength channels is explained. (iii) The scalability of the approach is demonstrated with an aggregate capacity of 0.8 Tb/s. The equipment has already been installed in the field and is ready for experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

The Berlin City Ring—a Testbed for Future Metropolitan Networks

Loading next page...
 
/lp/springer_journal/the-berlin-city-ring-a-testbed-for-future-metropolitan-networks-O1BMPOMNS1
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1011403415814
Publisher site
See Article on Publisher Site

Abstract

Dense wavelength division multiplexing (DWDM) is the key technology for future data transport. It combines transmission of data rates up to several Tb/s [1] with an overall transparency to data format and bit rate. The expected huge bandwidth demand in the near future requires an adaptability of DWDM transmission technology to metropolitan networks. Therefore, dynamically configurable DWDM transmission technology for bit rates up to 10 Gb/s has been investigated in a field trial in Berlin. This field trial is part of the KomNet research project. It is the goal of this field trial to optimize DWDM systems to metropolitan network requirements. Several aspects are in this paper: (i) A network simulation tool is described which helps to enlighten the profitability of statically and dynamically configured network nodes. (ii) A newly developed technology to add and drop single-wavelength channels is explained. (iii) The scalability of the approach is demonstrated with an aggregate capacity of 0.8 Tb/s. The equipment has already been installed in the field and is ready for experiments.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 9, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off