The BCL-xL and ACR-1 Genes Promote Differentiation and Reduce Apoptosis in Muscle Fibers of mdx Mice

The BCL-xL and ACR-1 Genes Promote Differentiation and Reduce Apoptosis in Muscle Fibers of mdx Mice The effects of the human BCL-xL and ACR-1genes on dystrophin expression in cross-striated muscle fibers (CSMF) and on CSMF viability were studied in mdx mice after ballistic cotransfection with the human dystrophin minigene. In control mice, the proportion of dystrophin-positive (D(+)) and dying CSMF were 2.1 ± 0.1 and 2.1 ± 0.3%, respectively. Introduction of the dystrophin minigene (20 μg of the pSG5dys plasmid) increased the proportions of D(+) and dying CSMF to 5.6 ± 1.4% and 4.5 ± 0.9%, respectively. When pSG5dys was introduced along with the pSFFV-Neo plasmid carrying the BCL-xL gene (10 μg of each plasmid per shot), the death of CSMF decreased to 3.7 ± 1% and the proportion of D(+) CSMF significantly (P < 0.05) increased to 12.2 ± 2.2%. Cotransfection with the dystrophin minigene and the BCL-xL gene at 20 μg of each plasmid per shot did not stimulate generation of D(+) CSMF, but did reduce the CSMF death to 1.5 ± 0.3%. Introduction of pSG5dys along with the pRc-CMV-10.1 plasmid containing the ACR-1 gene (10 μg of each plasmid per shot) reduced the proportion of D(+) CSMF to 1.1 ± 0.5% and significantly reduced the proportion of dying CSMF to 0.9 ± 0.3% as compared with the proportions observed in intact mice or in mice subjected to transfection with pSG5dys. Introduction of the pSG5dys plasmid substantially reduced the proportion of CSMF with peripheral nuclei, suggesting disturbed CSMF differentiation. After cotransfection with the human dystrophin minigene, the BCL-xL and ACR-1 genes did not affect the extent of CSMF differentiation as compared with that observed in the case of the dystrophin minigene alone. Thus, ballistic transfection of mdx mice with the human dystrophin gene used along with the BCL-xLor ACR-1 gene was shown to suppress the death of muscle fibers and to expedite dystrophin synthesis and cell differentiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The BCL-xL and ACR-1 Genes Promote Differentiation and Reduce Apoptosis in Muscle Fibers of mdx Mice

Loading next page...
 
/lp/springer_journal/the-bcl-xl-and-acr-1-genes-promote-differentiation-and-reduce-eyoxJjkmyc
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1021134708365
Publisher site
See Article on Publisher Site

Abstract

The effects of the human BCL-xL and ACR-1genes on dystrophin expression in cross-striated muscle fibers (CSMF) and on CSMF viability were studied in mdx mice after ballistic cotransfection with the human dystrophin minigene. In control mice, the proportion of dystrophin-positive (D(+)) and dying CSMF were 2.1 ± 0.1 and 2.1 ± 0.3%, respectively. Introduction of the dystrophin minigene (20 μg of the pSG5dys plasmid) increased the proportions of D(+) and dying CSMF to 5.6 ± 1.4% and 4.5 ± 0.9%, respectively. When pSG5dys was introduced along with the pSFFV-Neo plasmid carrying the BCL-xL gene (10 μg of each plasmid per shot), the death of CSMF decreased to 3.7 ± 1% and the proportion of D(+) CSMF significantly (P < 0.05) increased to 12.2 ± 2.2%. Cotransfection with the dystrophin minigene and the BCL-xL gene at 20 μg of each plasmid per shot did not stimulate generation of D(+) CSMF, but did reduce the CSMF death to 1.5 ± 0.3%. Introduction of pSG5dys along with the pRc-CMV-10.1 plasmid containing the ACR-1 gene (10 μg of each plasmid per shot) reduced the proportion of D(+) CSMF to 1.1 ± 0.5% and significantly reduced the proportion of dying CSMF to 0.9 ± 0.3% as compared with the proportions observed in intact mice or in mice subjected to transfection with pSG5dys. Introduction of the pSG5dys plasmid substantially reduced the proportion of CSMF with peripheral nuclei, suggesting disturbed CSMF differentiation. After cotransfection with the human dystrophin minigene, the BCL-xL and ACR-1 genes did not affect the extent of CSMF differentiation as compared with that observed in the case of the dystrophin minigene alone. Thus, ballistic transfection of mdx mice with the human dystrophin gene used along with the BCL-xLor ACR-1 gene was shown to suppress the death of muscle fibers and to expedite dystrophin synthesis and cell differentiation.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial