The backup reprovisioning problem of FIPP p-cycles for node failure on survivable WDM networks

The backup reprovisioning problem of FIPP p-cycles for node failure on survivable WDM networks Protection techniques for optical networks mainly rely on pre-allocated backup bandwidth, which may not be able to provide full protection guarantee when multiple failures occur in a network. After recovering from the previous failure, if failure occurs again, unprotected or vulnerable lightpaths cannot be recovered. In this paper, the minimal backup reprovisioning (MBR) problem is studied, in which the failure-independent path protecting p-cycles (FIPP p-cycles) scheme is considered for single-node failure on WDM networks. After recovering the affected lightpaths from a node failure, the goal of the MBR is to re-arrange the protecting and available resources such that working paths can be protected against next node failure if possible. An algorithm is designed to recover the protecting capabilities of the FIPP p-cycles, unless there is no sufficient network resource. The simulation results of the proposed method are also given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

The backup reprovisioning problem of FIPP p-cycles for node failure on survivable WDM networks

Loading next page...
 
/lp/springer_journal/the-backup-reprovisioning-problem-of-fipp-p-cycles-for-node-failure-on-XDXBpzcjgf
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-011-0328-9
Publisher site
See Article on Publisher Site

Abstract

Protection techniques for optical networks mainly rely on pre-allocated backup bandwidth, which may not be able to provide full protection guarantee when multiple failures occur in a network. After recovering from the previous failure, if failure occurs again, unprotected or vulnerable lightpaths cannot be recovered. In this paper, the minimal backup reprovisioning (MBR) problem is studied, in which the failure-independent path protecting p-cycles (FIPP p-cycles) scheme is considered for single-node failure on WDM networks. After recovering the affected lightpaths from a node failure, the goal of the MBR is to re-arrange the protecting and available resources such that working paths can be protected against next node failure if possible. An algorithm is designed to recover the protecting capabilities of the FIPP p-cycles, unless there is no sufficient network resource. The simulation results of the proposed method are also given.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off