The B″ regulatory subunit of protein phosphatase 2A mediates the dephosphorylation of rice retinoblastoma-related protein-1

The B″ regulatory subunit of protein phosphatase 2A mediates the dephosphorylation of rice... The phosphorylation of plant retinoblastoma-related (RBR) proteins by cyclin-dependent kinases (CDKs) is well documented, but the counteracting phosphatases have not been identified yet. We report here that rice retinoblastoma-related protein-1 (OsRBR1) interacted with the B″ subunit of rice protein phosphatase 2A (OsPP2A B″) and underwent reversible phosphorylation during the cell division cycle. The OsRBR1-OsPP2A B” association required B domain in OsRBR1 and the C-terminal region of OsPP2A B″. We found by immunoprecipitation that OsPP2A B″, OsPP2A catalytic subunit subtype II, PSTAIRE-type CDK and OsRBR1 were in the same protein complex, indicating a physical association between the phosphatase, the kinase and their common substrate. OsPP2A B″ contains three predicted CDK phosphorylation sites: Ser95, Ser102 and Ser119. The in vitro phosphorylation of Ser95 and Ser119 with PSTAIRE-kinases was verified by mass spectrometry. We generated a series of phosphorylation site mutants to mimic the dephosphorylated or phosphorylated states of OsPP2A B″, and confirmed that all of the three predicted sites can be phosphorylated. Yeast two-hybrid experiments suggested that the phosphorylation of OsPP2A B″ promoted the formation of the OsPP2A holoenzyme. A triple phosphorylation mimicking OsPP2A B″ mutant containing holoenzyme showed higher activity in phosphatase assays. Our data collectively show that the phosphatase activity of OsPP2A against OsRBR1 is regulated by the phosphorylation of its B″ regulatory subunit. However, the analysis of the effect of okadaic acid, a phosphatase inhibitor, in rice cell suspension cultures revealed that the dephosphorylation of OsRBR1 was completely inhibited only by high dose (300 nM) of the okadaic acid during the cell cycle progression. Therefore the role of the protein phosphatase 1 should be considered as an additional post translational regulatory component of RBR protein function in higher plants. Plant Molecular Biology Springer Journals

The B″ regulatory subunit of protein phosphatase 2A mediates the dephosphorylation of rice retinoblastoma-related protein-1

Loading next page...
Springer Netherlands
Copyright © 2014 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial