The axisymmetric boundary layer beneath a Rankine-like vortex

The axisymmetric boundary layer beneath a Rankine-like vortex  An experimental investigation of the three-dimensional boundary layer induced by a Rankine-like vortex with its axis normal to a stationary disk is described. The velocity field through the boundary layer was measured for Reynolds number Re (based on the tangential velocity and radius at the disk edge) ranging from 10 000 to 25 000 at various radial distances by means of a 4-beam, 2-component Laser Doppler Anemometer. Our results show that the nature of the boundary layer is affected by two factors: an inflexional instability caused by the crossflow velocity profile and a stability factor caused by the favorable pressure gradient. At lower Reynolds number, the radial pressure gradient has a very strong stabilizing effect on the boundary layer and acts to revert it to its laminar state upstream of the effusing core. At higher Re the inflexional instability caused by the crossflow velocity dominates while the stabilizing influence of the favorable pressure gradient recedes. As such, laminar reversion likely occurs closer to the effusion core. Thus, the point of laminar reversion moves closer to the effusion core as the Reynolds number is increased. Experiments in Fluids Springer Journals

The axisymmetric boundary layer beneath a Rankine-like vortex

Loading next page...
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial