The Association Between Myocardial Fibrosis and Depressed Capillary Density in Rat Model of Left Ventricular Hypertrophy

The Association Between Myocardial Fibrosis and Depressed Capillary Density in Rat Model of Left... Myocardial fibrogenesis is initiated once the coordination between oxygen supply and demand is disrupted in pressure overload-induced cardiac hypertrophy. Clinical observations showed that myocardial fibrosis did not evenly occur in the hypertrophic myocardium. The present study was undertaken to specifically address differential vulnerabilities to fibrogenesis of different regions in the myocardium subjected to pressure overload-induced hypertrophy. SD rats were divided into two groups, sham-operated control and ascending artery constriction-induced cardiac hypotrophy. Thirty-four weeks after surgery, rats were sacrificed and hearts were harvested. Myocardial tissues were processed and sequentially sectioned for detection of collagen deposition, myocyte hypertrophy and vascular density analysis. Redundant collagen stained with Sirius red and anti-collagen I antibody was found in the extracellular matrix, but high volume of collagen fraction was largely localized more in posterior and lateral walls than in anterior wall and interventricular septum, which is in accordance with the accumulation of fibroblasts. In association with the differential regional collagen accumulation, the cardiomyocytes were more hypertrophic in the posterior and lateral wall than the other left ventricle. However, the capillary density in the lateral and posterior walls was significantly decreased. The results indicated that the posterior and lateral walls were more vulnerable to fibrogenesis post-pressure overload-induced cardiac hypertrophy, which was associated with the depressed angiogenesis in these two regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cardiovascular Toxicology Springer Journals

The Association Between Myocardial Fibrosis and Depressed Capillary Density in Rat Model of Left Ventricular Hypertrophy

Loading next page...
 
/lp/springer_journal/the-association-between-myocardial-fibrosis-and-depressed-capillary-TzuWECMQx6
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Pharmacology/Toxicology; Cardiology
ISSN
1530-7905
eISSN
1559-0259
D.O.I.
10.1007/s12012-017-9438-7
Publisher site
See Article on Publisher Site

Abstract

Myocardial fibrogenesis is initiated once the coordination between oxygen supply and demand is disrupted in pressure overload-induced cardiac hypertrophy. Clinical observations showed that myocardial fibrosis did not evenly occur in the hypertrophic myocardium. The present study was undertaken to specifically address differential vulnerabilities to fibrogenesis of different regions in the myocardium subjected to pressure overload-induced hypertrophy. SD rats were divided into two groups, sham-operated control and ascending artery constriction-induced cardiac hypotrophy. Thirty-four weeks after surgery, rats were sacrificed and hearts were harvested. Myocardial tissues were processed and sequentially sectioned for detection of collagen deposition, myocyte hypertrophy and vascular density analysis. Redundant collagen stained with Sirius red and anti-collagen I antibody was found in the extracellular matrix, but high volume of collagen fraction was largely localized more in posterior and lateral walls than in anterior wall and interventricular septum, which is in accordance with the accumulation of fibroblasts. In association with the differential regional collagen accumulation, the cardiomyocytes were more hypertrophic in the posterior and lateral wall than the other left ventricle. However, the capillary density in the lateral and posterior walls was significantly decreased. The results indicated that the posterior and lateral walls were more vulnerable to fibrogenesis post-pressure overload-induced cardiac hypertrophy, which was associated with the depressed angiogenesis in these two regions.

Journal

Cardiovascular ToxicologySpringer Journals

Published: Dec 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off