The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response

The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the... In higher plants, the metabolism of carbon (C) and nitrogen nutrients (N) is mutually regulated and referred to as the C and N balance (C/N). Plants are thus able to optimize their growth depending on their cellular C/N status. Arabidopsis ATL31 and ATL6 encode a RING-type ubiquitin ligases which play a critical role in the C/N status response (Sato et al. in Plant J 60:852–864, 2009). Since many ATL members are involved in the plant defense response, the present study evaluated whether the C/N response regulators ATL31 and ATL6 are involved in defense responses. Our results confirmed that ATL31 and ATL6 expression is up-regulated with the microbe-associated molecular patterns elicitors flg22 and chitin as well as with infections with Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Moreover, transgenic plants overexpressing ATL31 and ATL6 displayed increased resistance to Pst. DC3000. In accordance with these data, loss of ATL31 and ATL6 function in an atl31 atl6 double knockout mutant resulted in reduced resistance to Pst. DC3000. In addition, the molecular cross-talk between C/N and the defense response was investigated by mining public databases. The analysis identified the transcription factors MYB51 and WRKY33, which are involved in the defense response, and their transcripts levels correlate closely with ATL31 and ATL6. Further study demonstrated that the expression of ATL31, ATL6 and defense marker genes including MYB51 and WRKY33 were regulated by C/N conditions. Taken together, these results indicate that ATL31 and ATL6 function as key components of both C/N regulation and the defense response in Arabidopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response

Loading next page...
 
/lp/springer_journal/the-arabidopsis-ubiquitin-ligases-atl31-and-atl6-control-the-defense-q9TZzliSWE
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Plant Sciences; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9907-0
Publisher site
See Article on Publisher Site

Abstract

In higher plants, the metabolism of carbon (C) and nitrogen nutrients (N) is mutually regulated and referred to as the C and N balance (C/N). Plants are thus able to optimize their growth depending on their cellular C/N status. Arabidopsis ATL31 and ATL6 encode a RING-type ubiquitin ligases which play a critical role in the C/N status response (Sato et al. in Plant J 60:852–864, 2009). Since many ATL members are involved in the plant defense response, the present study evaluated whether the C/N response regulators ATL31 and ATL6 are involved in defense responses. Our results confirmed that ATL31 and ATL6 expression is up-regulated with the microbe-associated molecular patterns elicitors flg22 and chitin as well as with infections with Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Moreover, transgenic plants overexpressing ATL31 and ATL6 displayed increased resistance to Pst. DC3000. In accordance with these data, loss of ATL31 and ATL6 function in an atl31 atl6 double knockout mutant resulted in reduced resistance to Pst. DC3000. In addition, the molecular cross-talk between C/N and the defense response was investigated by mining public databases. The analysis identified the transcription factors MYB51 and WRKY33, which are involved in the defense response, and their transcripts levels correlate closely with ATL31 and ATL6. Further study demonstrated that the expression of ATL31, ATL6 and defense marker genes including MYB51 and WRKY33 were regulated by C/N conditions. Taken together, these results indicate that ATL31 and ATL6 function as key components of both C/N regulation and the defense response in Arabidopsis.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 7, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off