The Arabidopsis thaliana dhdps gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner

The Arabidopsis thaliana dhdps gene encoding dihydrodipicolinate synthase, key enzyme of lysine... Lysine synthesis in prokaryotes, some phycomycetes and higher plants starts with the condensation of L-aspartate-β-semialdehyde (L-ASA) and pyruvate into dihydrodipicolinic acid. The enzyme that catalyses this step, dihydrodipicolinate synthase (DHDPS), is inhibited by the end-product lysine and is therefore thought to have a regulatory control on lysine synthesis. We have cloned and sequenced an Arabidopsis thaliana DNA fragment containing 900 bases upstream of the dhdps coding sequence. A transcriptional fusion of this fragment with the β-glucuronidase reporter gene (uidA, Gus) was used to study the transcription properties of this promoter fragment (DS). No lysine-induced repression on transcription could be detected. Expression of DS-Gus activity in transformed Arabidopsis thaliana and Nicotiana tabacum was found to be cell type-specific. In the vegetative parts of the plant, GUS activity was located in meristems and young vasculature of roots, in vasculature of stem and leaves and in the meristems of young shoots. In flowers, high expression was found in the carpels, style, stigma, developing embryos, tapetum of young anthers and pollen. We demonstrated that the Arabidopsis DS promoter can direct its cell type-specific expression in a heterologous plant, Nicotiana tabacum. The importance of transcriptional regulation of the dhdps gene, and in more general genes involved in amino acid biosynthesis, is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The Arabidopsis thaliana dhdps gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner

Loading next page...
 
/lp/springer_journal/the-arabidopsis-thaliana-dhdps-gene-encoding-dihydrodipicolinate-0C0UjcHQkj
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006132428623
Publisher site
See Article on Publisher Site

Abstract

Lysine synthesis in prokaryotes, some phycomycetes and higher plants starts with the condensation of L-aspartate-β-semialdehyde (L-ASA) and pyruvate into dihydrodipicolinic acid. The enzyme that catalyses this step, dihydrodipicolinate synthase (DHDPS), is inhibited by the end-product lysine and is therefore thought to have a regulatory control on lysine synthesis. We have cloned and sequenced an Arabidopsis thaliana DNA fragment containing 900 bases upstream of the dhdps coding sequence. A transcriptional fusion of this fragment with the β-glucuronidase reporter gene (uidA, Gus) was used to study the transcription properties of this promoter fragment (DS). No lysine-induced repression on transcription could be detected. Expression of DS-Gus activity in transformed Arabidopsis thaliana and Nicotiana tabacum was found to be cell type-specific. In the vegetative parts of the plant, GUS activity was located in meristems and young vasculature of roots, in vasculature of stem and leaves and in the meristems of young shoots. In flowers, high expression was found in the carpels, style, stigma, developing embryos, tapetum of young anthers and pollen. We demonstrated that the Arabidopsis DS promoter can direct its cell type-specific expression in a heterologous plant, Nicotiana tabacum. The importance of transcriptional regulation of the dhdps gene, and in more general genes involved in amino acid biosynthesis, is discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off