The Arabidopsis DNA mismatch repair gene PMS1 restricts somatic recombination between homeologous sequences

The Arabidopsis DNA mismatch repair gene PMS1 restricts somatic recombination between homeologous... The eukaryotic DNA mismatch repair (MMR) system contributes to maintaining the fidelity of genetic information by correcting replication errors and preventing illegitimate recombination events. This study aimed to examine the function(s) of the Arabidopsis thaliana PMS1 gene (AtPMS1), one of three homologs of the bacterial MutL gene in plants. Two independent mutant alleles (Atpms1-1 and Atpms1-2) were obtained and one of these (Atpms1-1) was studied in detail. The mutant exhibited a reduction in seed set and a bias against the transmission of the mutant allele. Somatic recombination, both homologous and homeologous, was examined using a set of reporter constructs. Homologous recombination remained unchanged in the mutant while homeologous recombination was between 1.7- and 4.8-fold higher than in the wild type. This increase in homeologous recombination frequency was not correlated with the degree of sequence divergence. In RNAi lines, a range of increases in homeologous recombination were observed with two lines showing a 3.3-fold and a 3.6-fold increase. These results indicate that the AtPMS1 gene contributes to an antirecombination activity aimed at restricting recombination between diverged sequences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The Arabidopsis DNA mismatch repair gene PMS1 restricts somatic recombination between homeologous sequences

Loading next page...
 
/lp/springer_journal/the-arabidopsis-dna-mismatch-repair-gene-pms1-restricts-somatic-PqQTemmLJC
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9447-9
Publisher site
See Article on Publisher Site

Abstract

The eukaryotic DNA mismatch repair (MMR) system contributes to maintaining the fidelity of genetic information by correcting replication errors and preventing illegitimate recombination events. This study aimed to examine the function(s) of the Arabidopsis thaliana PMS1 gene (AtPMS1), one of three homologs of the bacterial MutL gene in plants. Two independent mutant alleles (Atpms1-1 and Atpms1-2) were obtained and one of these (Atpms1-1) was studied in detail. The mutant exhibited a reduction in seed set and a bias against the transmission of the mutant allele. Somatic recombination, both homologous and homeologous, was examined using a set of reporter constructs. Homologous recombination remained unchanged in the mutant while homeologous recombination was between 1.7- and 4.8-fold higher than in the wild type. This increase in homeologous recombination frequency was not correlated with the degree of sequence divergence. In RNAi lines, a range of increases in homeologous recombination were observed with two lines showing a 3.3-fold and a 3.6-fold increase. These results indicate that the AtPMS1 gene contributes to an antirecombination activity aimed at restricting recombination between diverged sequences.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off