The Arabidopsis AtDi19 Gene Family Encodes a Novel Type of Cys2/His2 Zinc-finger Protein Implicated in ABA-independent Dehydration, High-salinity Stress and Light Signaling Pathways

The Arabidopsis AtDi19 Gene Family Encodes a Novel Type of Cys2/His2 Zinc-finger Protein... The AtDi19 (drought-induced) gene family encodes seven hydrophilic proteins that contain two atypical Cys2/His2 (C2H2) zinc finger-like domains that are evolutionarily well-conserved within angiosperms suggesting a conserved and important function. Five of the seven Arabidopsis AtDi19-related:DsRed2 fusion proteins exhibited speckled patterns of localization within the nucleus as shown by transient expression analysis in Arabidopsis protoplasts. In contrast, AtDi19-2:DsRed2 was present in the nucleus and cytoplasm, whereas AtDi19-4:DsRed2 was localized to the nuclear periphery. mRNA expression studies showed that AtDi19 genes are ubiquitously expressed in Arabidopsis tissues, although some differences were observed. In seedlings, RT-PCR analyses showed that AtDi19-1 and AtDi19-3 steady-state transcript amounts were rapidly induced by dehydration, whereas transcript amounts for AtDi19-2 and AtDi19-4 increased in response to high-salt stress. In addition, the mRNA abundance of all the AtDi19-related gene family members was not regulated by ABA. These data, taken together, suggest that several AtDi19-related gene family members may function in ABA-independent, dehydration and salinity stress signaling pathways. However, they may also be regulated by other abiotic stimuli. AtDi19-7, for example, has been implicated in regulating light signaling and responses. Finally, we show that most AtDi19-related proteins are phosphorylated in vitro by calcium-dependent protein kinases suggesting that this post-translational modification may be important for regulating the function of this novel protein family. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The Arabidopsis AtDi19 Gene Family Encodes a Novel Type of Cys2/His2 Zinc-finger Protein Implicated in ABA-independent Dehydration, High-salinity Stress and Light Signaling Pathways

Loading next page...
 
/lp/springer_journal/the-arabidopsis-atdi19-gene-family-encodes-a-novel-type-of-cys2-his2-mn0SCsXrw0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5798-7
Publisher site
See Article on Publisher Site

Abstract

The AtDi19 (drought-induced) gene family encodes seven hydrophilic proteins that contain two atypical Cys2/His2 (C2H2) zinc finger-like domains that are evolutionarily well-conserved within angiosperms suggesting a conserved and important function. Five of the seven Arabidopsis AtDi19-related:DsRed2 fusion proteins exhibited speckled patterns of localization within the nucleus as shown by transient expression analysis in Arabidopsis protoplasts. In contrast, AtDi19-2:DsRed2 was present in the nucleus and cytoplasm, whereas AtDi19-4:DsRed2 was localized to the nuclear periphery. mRNA expression studies showed that AtDi19 genes are ubiquitously expressed in Arabidopsis tissues, although some differences were observed. In seedlings, RT-PCR analyses showed that AtDi19-1 and AtDi19-3 steady-state transcript amounts were rapidly induced by dehydration, whereas transcript amounts for AtDi19-2 and AtDi19-4 increased in response to high-salt stress. In addition, the mRNA abundance of all the AtDi19-related gene family members was not regulated by ABA. These data, taken together, suggest that several AtDi19-related gene family members may function in ABA-independent, dehydration and salinity stress signaling pathways. However, they may also be regulated by other abiotic stimuli. AtDi19-7, for example, has been implicated in regulating light signaling and responses. Finally, we show that most AtDi19-related proteins are phosphorylated in vitro by calcium-dependent protein kinases suggesting that this post-translational modification may be important for regulating the function of this novel protein family.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 12, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off