The approach of power priors for ability estimation in IRT models

The approach of power priors for ability estimation in IRT models The aim of the paper is to propose the introduction of power prior distributions in the ability estimation of item response theory (IRT) models. In the literature, power priors have been proposed to integrate information coming from historical data with current data within Bayesian parameter estimation for generalized linear models. This approach allows to use a weighted posterior distribution based on the historical study as prior distribution for the parameters in the current study. Applications can be found especially in clinical trials and survival studies. Here, power priors are introduced within a Gibbs sampler scheme in the ability estimation step for a unidimensional IRT model. A Markov chain Monte Carlo algorithm is chosen for the high flexibility and possibility of extension to more complex models. The efficiency of the approach is demonstrated in terms of measurement precision by using data from the Hospital Anxiety and Depression Scale with a small sample. Quality & Quantity Springer Journals

The approach of power priors for ability estimation in IRT models

Loading next page...
Springer Netherlands
Copyright © 2014 by Springer Science+Business Media Dordrecht
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial