The approach of power priors for ability estimation in IRT models

The approach of power priors for ability estimation in IRT models The aim of the paper is to propose the introduction of power prior distributions in the ability estimation of item response theory (IRT) models. In the literature, power priors have been proposed to integrate information coming from historical data with current data within Bayesian parameter estimation for generalized linear models. This approach allows to use a weighted posterior distribution based on the historical study as prior distribution for the parameters in the current study. Applications can be found especially in clinical trials and survival studies. Here, power priors are introduced within a Gibbs sampler scheme in the ability estimation step for a unidimensional IRT model. A Markov chain Monte Carlo algorithm is chosen for the high flexibility and possibility of extension to more complex models. The efficiency of the approach is demonstrated in terms of measurement precision by using data from the Hospital Anxiety and Depression Scale with a small sample. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

The approach of power priors for ability estimation in IRT models

Loading next page...
 
/lp/springer_journal/the-approach-of-power-priors-for-ability-estimation-in-irt-models-Dd0re0OHRj
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-014-0059-y
Publisher site
See Article on Publisher Site

Abstract

The aim of the paper is to propose the introduction of power prior distributions in the ability estimation of item response theory (IRT) models. In the literature, power priors have been proposed to integrate information coming from historical data with current data within Bayesian parameter estimation for generalized linear models. This approach allows to use a weighted posterior distribution based on the historical study as prior distribution for the parameters in the current study. Applications can be found especially in clinical trials and survival studies. Here, power priors are introduced within a Gibbs sampler scheme in the ability estimation step for a unidimensional IRT model. A Markov chain Monte Carlo algorithm is chosen for the high flexibility and possibility of extension to more complex models. The efficiency of the approach is demonstrated in terms of measurement precision by using data from the Hospital Anxiety and Depression Scale with a small sample.

Journal

Quality & QuantitySpringer Journals

Published: Jul 25, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off