The application of interactive dynamic virtual surgical simulation visualization method

The application of interactive dynamic virtual surgical simulation visualization method In this paper, an interactive dynamic simulation method is proposed to solve computational models of soft tissue undergoing large deformation, collision detection, and volume conservation in medical surgical simulation visualization. During the process of implementation of the interactive dynamic simulation method, the point-based method is used to simulate the elastic solids undergoing large deformations and the position-based method is used to simulate the objects collision, friction and volume conservation. Numerical results demonstrate that the proposed method improves the efficiency and stability of the response of heterogeneous soft tissue undergoing contact or even the multi-organs interactions, and it can be extended to interactive biopsy and cutting simulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

The application of interactive dynamic virtual surgical simulation visualization method

Loading next page...
 
/lp/springer_journal/the-application-of-interactive-dynamic-virtual-surgical-simulation-kec90zt9Ge
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4331-0
Publisher site
See Article on Publisher Site

Abstract

In this paper, an interactive dynamic simulation method is proposed to solve computational models of soft tissue undergoing large deformation, collision detection, and volume conservation in medical surgical simulation visualization. During the process of implementation of the interactive dynamic simulation method, the point-based method is used to simulate the elastic solids undergoing large deformations and the position-based method is used to simulate the objects collision, friction and volume conservation. Numerical results demonstrate that the proposed method improves the efficiency and stability of the response of heterogeneous soft tissue undergoing contact or even the multi-organs interactions, and it can be extended to interactive biopsy and cutting simulation.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jan 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off