The application of high temporal resolution data in river catchment modelling and management strategies

The application of high temporal resolution data in river catchment modelling and management... Modelling changes in river water quality, and by extension developing river management strategies, has historically been reliant on empirical data collected at relatively low temporal resolutions. With access to data collected at higher temporal resolutions, this study investigated how these new dataset types could be employed to assess the precision and accuracy of two phosphorus (P) load apportionment models (LAMs) developed on lower resolution empirical data. Predictions were made of point and diffuse sources of P across ten different sampling scenarios. Sampling resolution ranged from hourly to monthly through the use of 2000 newly created datasets from high frequency P and discharge data collected from a eutrophic river draining a 9.48 km2 catchment. Outputs from the two LAMs were found to differ significantly in the P load apportionment (51.4% versus 4.6% from point sources) with reducing precision and increasing bias as sampling frequency decreased. Residual analysis identified a large deviation from observed data at high flows. This deviation affected the apportionment of P from diffuse sources in particular. The study demonstrated the potential problems in developing empirical models such as LAMs based on temporally relatively poorly-resolved data (the level of resolution that is available for the majority of catchments). When these models are applied ad hoc and outside an expert modelling framework using extant datasets of lower resolution, interpretations of their outputs could potentially reduce the effectiveness of management decisions aimed at improving water quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Monitoring and Assessment Springer Journals

The application of high temporal resolution data in river catchment modelling and management strategies

Loading next page...
 
/lp/springer_journal/the-application-of-high-temporal-resolution-data-in-river-catchment-KEP1bGbuyb
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Environment; Monitoring/Environmental Analysis; Environmental Management; Ecotoxicology; Atmospheric Protection/Air Quality Control/Air Pollution; Ecology
ISSN
0167-6369
eISSN
1573-2959
D.O.I.
10.1007/s10661-017-6174-1
Publisher site
See Article on Publisher Site

Abstract

Modelling changes in river water quality, and by extension developing river management strategies, has historically been reliant on empirical data collected at relatively low temporal resolutions. With access to data collected at higher temporal resolutions, this study investigated how these new dataset types could be employed to assess the precision and accuracy of two phosphorus (P) load apportionment models (LAMs) developed on lower resolution empirical data. Predictions were made of point and diffuse sources of P across ten different sampling scenarios. Sampling resolution ranged from hourly to monthly through the use of 2000 newly created datasets from high frequency P and discharge data collected from a eutrophic river draining a 9.48 km2 catchment. Outputs from the two LAMs were found to differ significantly in the P load apportionment (51.4% versus 4.6% from point sources) with reducing precision and increasing bias as sampling frequency decreased. Residual analysis identified a large deviation from observed data at high flows. This deviation affected the apportionment of P from diffuse sources in particular. The study demonstrated the potential problems in developing empirical models such as LAMs based on temporally relatively poorly-resolved data (the level of resolution that is available for the majority of catchments). When these models are applied ad hoc and outside an expert modelling framework using extant datasets of lower resolution, interpretations of their outputs could potentially reduce the effectiveness of management decisions aimed at improving water quality.

Journal

Environmental Monitoring and AssessmentSpringer Journals

Published: Aug 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off