The Apical Membrane Glycocalyx of MDCK Cells

The Apical Membrane Glycocalyx of MDCK Cells The microenvironment near the apical membrane of MDCK cells was studied by quantitation of the fluorescence of wheat germ agglutin attached to fluorescein (WGA). WGA was shown to bind to sialic acid residues attached to galactose at the α-2,3 position in the glycocalyx on the apical membrane. Young MDCK cells (5–8 days after splitting) showed a patchy distribution of WGA at stable sites that returned to the same locations after removal of sialic acid residues by neuraminidase treatment. Other lectins also showed stable binding to patches on the apical membrane of young cells. The ratio of WGA fluorescence emission at two excitation wavelengths was used to measure near-membrane pH. The near-membrane pH was markedly acidic to the pH 7.4 bathing solution in both young and older cells (13–21 days after splitting). Patches on the apical membrane of young cells exhibited a range of near-membrane pH values with a mean ±sem of 6.86 ± 0.04 (n= 121) while the near-membrane pH of older cells was 6.61 ± 0.04 (n= 120) with a uniform WGA distribution. We conclude that the distribution of lectin binding sites in young cells reflects the underlying nonrandom location of membrane proteins in the apical membrane and that nonuniformities in the pH of patches may indicate regional differences in membrane acid-base transport as well as in the location of charged sugars in the glycocalyx. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Apical Membrane Glycocalyx of MDCK Cells

Loading next page...
 
/lp/springer_journal/the-apical-membrane-glycocalyx-of-mdck-cells-KJVKnJnYOn
Publisher
Springer Journals
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232001072
Publisher site
See Article on Publisher Site

Abstract

The microenvironment near the apical membrane of MDCK cells was studied by quantitation of the fluorescence of wheat germ agglutin attached to fluorescein (WGA). WGA was shown to bind to sialic acid residues attached to galactose at the α-2,3 position in the glycocalyx on the apical membrane. Young MDCK cells (5–8 days after splitting) showed a patchy distribution of WGA at stable sites that returned to the same locations after removal of sialic acid residues by neuraminidase treatment. Other lectins also showed stable binding to patches on the apical membrane of young cells. The ratio of WGA fluorescence emission at two excitation wavelengths was used to measure near-membrane pH. The near-membrane pH was markedly acidic to the pH 7.4 bathing solution in both young and older cells (13–21 days after splitting). Patches on the apical membrane of young cells exhibited a range of near-membrane pH values with a mean ±sem of 6.86 ± 0.04 (n= 121) while the near-membrane pH of older cells was 6.61 ± 0.04 (n= 120) with a uniform WGA distribution. We conclude that the distribution of lectin binding sites in young cells reflects the underlying nonrandom location of membrane proteins in the apical membrane and that nonuniformities in the pH of patches may indicate regional differences in membrane acid-base transport as well as in the location of charged sugars in the glycocalyx.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off