The Antiarrhythmic Effect of n-3 Polyunsaturated Fatty Acids: Modulation of Cardiac Ion Channels as a Potential Mechanism

The Antiarrhythmic Effect of n-3 Polyunsaturated Fatty Acids: Modulation of Cardiac Ion Channels... Sudden cardiac death remains one of the most serious medical challenges in Western countries. Increasing evidence in recent years has demonstrated that the n-3 polyunsaturated fatty acids (PUFAs) can prevent fatal ventricular arrhythmias in experimental animals and probably in humans. Dietary supplement of fish oils or intravenous infusion of the n-3 PUFAs prevents ventricular fibrillation caused by ischemia/reperfusion. Similar antiarrhythmic effects of these fatty acids are also observed in cultured mammalian cardiomyocytes. Based on clinical observations and experimental studies in vitro and in vivo, several mechanisms have been postulated for the antiarrhythmic effect of the n-3 PUFAs. The data from our laboratory and others have shown that the n-3 PUFAs are able to affect the activities of cardiac ion channels. The modulation of channel activities, especially voltage-gated Na+ and L-type Ca2+ channels, by the n-3 fatty acids may explain, at least partially, the antiarrhythmic action. It is not clear, however, whether one or more than one mechanism involves the beneficial effect of the n-3 PUFAs on the heart. This article summarizes our recent studies on the specific effects of the n-3 PUFAs on cardiac ion channels. In addition, the effect of the n-3 PUFAs on the human hyperpolarization-activated cyclic-nucleotide-modulated channel is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

The Antiarrhythmic Effect of n-3 Polyunsaturated Fatty Acids: Modulation of Cardiac Ion Channels as a Potential Mechanism

Loading next page...
 
/lp/springer_journal/the-antiarrhythmic-effect-of-n-3-polyunsaturated-fatty-acids-30BmgVXqeq
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0786-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial