The Alternative Dunford–Pettis Property for Subspaces of the Compact Operators

The Alternative Dunford–Pettis Property for Subspaces of the Compact Operators A Banach space X has the alternative Dunford–Pettis property if for every weakly convergent sequences (x n ) → x in X and (x n *) → 0 in X* with ||x n || = ||x||= 1 we have (x n *(x n )) → 0. We get a characterization of certain operator spaces having the alternative Dunford–Pettis property. As a consequence of this result, if H is a Hilbert space we show that a closed subspace M of the compact operators on H has the alternative Dunford–Pettis property if, and only if, for any h ∈ H, the evaluation operators from M to H given by S ↦ Sh, S ↦ S t h are DP1 operators, that is, they apply weakly convergent sequences in the unit sphere whose limits are also in the unit sphere into norm convergent sequences. We also prove a characterization of certain closed subalgebras of K(H) having the alternative Dunford-Pettis property by assuming that the multiplication operators are DP1. Positivity Springer Journals

The Alternative Dunford–Pettis Property for Subspaces of the Compact Operators

Loading next page...
Copyright © 2006 by Birkhäuser Verlag, Basel
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial