The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens

The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC... We have modeled a 3D structure for the C-type lectin domain of the African swine fever virus protein EP153R, based on the structure of CD69, CD94 and Ly49A cell receptors, and this model predicts that a dimer of EP153R may establish an asymmetric interaction with one MHC-I molecule. A functional consequence of this interaction could be the modulation of MHC-I expression. By using both transfection and virus infection experiments, we demonstrate here that EP153R inhibits MHC-I membrane expression, most probably by impairing the exocytosis process, without affecting the synthesis or glycosylation of MHC antigens. Interestingly, the EP153-mediated control of MHC requires the intact configuration of the lectin domain of the viral protein, and specifically the R133 residue. Interference of EP153R gene expression during virus infection and studies using virus recombinants with the EP153R gene deleted further support the inhibitory role of the viral lectin on the expression of MHC-I antigens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens

Loading next page...
 
/lp/springer_journal/the-african-swine-fever-virus-lectin-ep153r-modulates-the-surface-HfP2WKlyLS
Publisher
Springer Vienna
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0846-2
Publisher site
See Article on Publisher Site

Abstract

We have modeled a 3D structure for the C-type lectin domain of the African swine fever virus protein EP153R, based on the structure of CD69, CD94 and Ly49A cell receptors, and this model predicts that a dimer of EP153R may establish an asymmetric interaction with one MHC-I molecule. A functional consequence of this interaction could be the modulation of MHC-I expression. By using both transfection and virus infection experiments, we demonstrate here that EP153R inhibits MHC-I membrane expression, most probably by impairing the exocytosis process, without affecting the synthesis or glycosylation of MHC antigens. Interestingly, the EP153-mediated control of MHC requires the intact configuration of the lectin domain of the viral protein, and specifically the R133 residue. Interference of EP153R gene expression during virus infection and studies using virus recombinants with the EP153R gene deleted further support the inhibitory role of the viral lectin on the expression of MHC-I antigens.

Journal

Archives of VirologySpringer Journals

Published: Feb 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off