Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The aero-acoustic resonance behavior of partially covered slender cavities

The aero-acoustic resonance behavior of partially covered slender cavities The present investigation focuses on the aero-acoustic resonance of cavities with a width much larger than their length or depth and partially covered, as often encountered in automotive door gaps. The cavities are under influence of a low Mach number flow with a relatively thick boundary layer. Under certain conditions, these cavities can acoustically resonate with the flow. The upstream and downstream edge of the opening as well as the cover lip overhang location and boundary layer thickness are parametrically varied in an experimental campaign, and the effect of the parameters on the resonance amplitude is investigated. Slender rectangular cavity geometries with an opening length of 8 mm and spanwise width of 500 mm are used. The cavity flow-induced acoustic response is measured with pressure transducers at different spanwise locations inside the cavity. Hot-wire measurements are performed to quantify the boundary layer characteristics. Furthermore, high-speed time-resolved particle image velocimetry is used to capture the instantaneous velocity field around the opening geometries. When the boundary layer thickness is increased, the cavity resonance amplitude diminishes. The cover lip overhang location has a large influence on the resonance response, which can be attributed to changes in the cavity driven flow properties. Rounding of the upstream edge promotes resonance, whereas rounding of the downstream edge can diminish it. A possible explanation of the phenomenon is given on the basis of the PIV observations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

The aero-acoustic resonance behavior of partially covered slender cavities

Loading next page...
 
/lp/springer_journal/the-aero-acoustic-resonance-behavior-of-partially-covered-slender-h0kdBibPcc

References (45)

Publisher
Springer Journals
Copyright
Copyright © 2011 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-011-1154-7
Publisher site
See Article on Publisher Site

Abstract

The present investigation focuses on the aero-acoustic resonance of cavities with a width much larger than their length or depth and partially covered, as often encountered in automotive door gaps. The cavities are under influence of a low Mach number flow with a relatively thick boundary layer. Under certain conditions, these cavities can acoustically resonate with the flow. The upstream and downstream edge of the opening as well as the cover lip overhang location and boundary layer thickness are parametrically varied in an experimental campaign, and the effect of the parameters on the resonance amplitude is investigated. Slender rectangular cavity geometries with an opening length of 8 mm and spanwise width of 500 mm are used. The cavity flow-induced acoustic response is measured with pressure transducers at different spanwise locations inside the cavity. Hot-wire measurements are performed to quantify the boundary layer characteristics. Furthermore, high-speed time-resolved particle image velocimetry is used to capture the instantaneous velocity field around the opening geometries. When the boundary layer thickness is increased, the cavity resonance amplitude diminishes. The cover lip overhang location has a large influence on the resonance response, which can be attributed to changes in the cavity driven flow properties. Rounding of the upstream edge promotes resonance, whereas rounding of the downstream edge can diminish it. A possible explanation of the phenomenon is given on the basis of the PIV observations.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 9, 2011

There are no references for this article.