The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins

The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and... The Arabidopsis ETO1 protein is a negative regulator of ethylene biosynthesis. It specifically inhibits the enzyme activity of type 2 1-aminocyclopropane-1-carboxylate synthases (ACC synthases or ACS) and promotes their degradation by a proteasome-dependent pathway. To further understand the function of the ETO1 family in the plant kingdom, we cloned a cDNA of LeEOL1 (Lycopersicon esculentum ETO 1- LIKE 1), an ETO1 homolog from tomato. LeEOL1 encodes a putative protein with domain architecture conserved in the Arabidopsis ETO1/EOL1/EOL2 proteins and in the predicted rice EOL proteins. LeEOL1 is expressed in leaf, stem, root, flower, and the full ripe stage of fruit, suggesting diverse regulatory roles in the development of tomato. Yeast two-hybrid analysis revealed specific interactions between LeEOL1 and type 2 ACC synthases. When the C-terminal 14 amino acids (TOE; target of ETO1) of LE-ACS3 specific to type 2 ACC synthases were fused to a type 1 ACS, LE-ACS2, at the corresponding position, it allowed LE-ACS2 to strongly interact with LeEOL1. A GFP-TOELE-ACS3 fusion protein expressed in rice calli and in the roots of wild-type Arabidopsis showed reduced stability compared to native GFP. However, the fluorescence of GFP-TOELE-ACS3 was comparable to that of the native GFP in Arabidopsis eto1-4 mutant. Furthermore, MG132 treatment significantly enhanced the fluorescence of GFP-TOELE-ACS3 in the roots of wild-type Arabidopsis. These results suggest that the ETO1-family-mediated ACS protein degradation pathway is conserved in both monocots and dicots, and that TOE acts as a protein destabilization signal recognized by the ETO1 protein family. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins

Loading next page...
 
/lp/springer_journal/the-acc-synthase-toe-sequence-is-required-for-interaction-with-eto1-u7lcCG0VHo
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Plant Sciences ; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9029-7
Publisher site
See Article on Publisher Site

Abstract

The Arabidopsis ETO1 protein is a negative regulator of ethylene biosynthesis. It specifically inhibits the enzyme activity of type 2 1-aminocyclopropane-1-carboxylate synthases (ACC synthases or ACS) and promotes their degradation by a proteasome-dependent pathway. To further understand the function of the ETO1 family in the plant kingdom, we cloned a cDNA of LeEOL1 (Lycopersicon esculentum ETO 1- LIKE 1), an ETO1 homolog from tomato. LeEOL1 encodes a putative protein with domain architecture conserved in the Arabidopsis ETO1/EOL1/EOL2 proteins and in the predicted rice EOL proteins. LeEOL1 is expressed in leaf, stem, root, flower, and the full ripe stage of fruit, suggesting diverse regulatory roles in the development of tomato. Yeast two-hybrid analysis revealed specific interactions between LeEOL1 and type 2 ACC synthases. When the C-terminal 14 amino acids (TOE; target of ETO1) of LE-ACS3 specific to type 2 ACC synthases were fused to a type 1 ACS, LE-ACS2, at the corresponding position, it allowed LE-ACS2 to strongly interact with LeEOL1. A GFP-TOELE-ACS3 fusion protein expressed in rice calli and in the roots of wild-type Arabidopsis showed reduced stability compared to native GFP. However, the fluorescence of GFP-TOELE-ACS3 was comparable to that of the native GFP in Arabidopsis eto1-4 mutant. Furthermore, MG132 treatment significantly enhanced the fluorescence of GFP-TOELE-ACS3 in the roots of wild-type Arabidopsis. These results suggest that the ETO1-family-mediated ACS protein degradation pathway is conserved in both monocots and dicots, and that TOE acts as a protein destabilization signal recognized by the ETO1 protein family.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off