The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae

The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in... The cyclin-dependent protein kinase Pho85 is involved in the regulation of phosphate metabolism in yeast Saccharomyces cerevisiae. Mutations in the PHO85 gene lead to constitutive synthesis of Pho5 acid phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, and other pleiotropic effects. In this work, it was shown that the accumulation of respiratory incompetent cells occurs with high frequency in strains carrying pho85 mutations as early as during the first cell divisions, and the number of these cells at the early logarithmic growth phase of the culture promptly reaches virtually 100%. Cytological analysis revealed a high accumulation rate of [rho0] cells in the background of gene pho85 that may be related to disturbances in the distribution of mitochondrial nucleoids rather than to changes in morphology of mitochondria and a delay in their transport into the bud. Genetic analysis revealed that secondary mutations pho4, pho81, pho84, and pho87 stabilize nucleoids and prevent the loss of mitochondrial DNA caused by pho85. These results provide an evidence for the influence of intracellular phosphate concentration on the inheritance of mitochondrial nucleoids, but do not exclude the possibility that the occurrence of mutation pho4 in the background of gene pho85 may change the expression level of other genes required for the stabilization of mitochondrial functions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae

Loading next page...
 
/lp/springer_journal/the-absence-of-cyclin-dependent-protein-kinase-pho85-affects-stability-TmDWNfmIod
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795409060039
Publisher site
See Article on Publisher Site

Abstract

The cyclin-dependent protein kinase Pho85 is involved in the regulation of phosphate metabolism in yeast Saccharomyces cerevisiae. Mutations in the PHO85 gene lead to constitutive synthesis of Pho5 acid phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, and other pleiotropic effects. In this work, it was shown that the accumulation of respiratory incompetent cells occurs with high frequency in strains carrying pho85 mutations as early as during the first cell divisions, and the number of these cells at the early logarithmic growth phase of the culture promptly reaches virtually 100%. Cytological analysis revealed a high accumulation rate of [rho0] cells in the background of gene pho85 that may be related to disturbances in the distribution of mitochondrial nucleoids rather than to changes in morphology of mitochondria and a delay in their transport into the bud. Genetic analysis revealed that secondary mutations pho4, pho81, pho84, and pho87 stabilize nucleoids and prevent the loss of mitochondrial DNA caused by pho85. These results provide an evidence for the influence of intracellular phosphate concentration on the inheritance of mitochondrial nucleoids, but do not exclude the possibility that the occurrence of mutation pho4 in the background of gene pho85 may change the expression level of other genes required for the stabilization of mitochondrial functions.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jun 19, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off